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The Introduction to Artificial Intelligence

• Part I Brief Introduction to AI & Different AI tribes

• Part II Knowledge Representation & Reasoning

• Part III AI GAMES and Searching

• Part IV Model Evaluation and Selection

• Part V Machine Learning
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Machine Learning

Supervised 
learning

Unsupervised 
learning

Reinforcement 
learning



Unsupervised learning

• Clustering

• K-means method

• Spectral clustering

• Representation learning
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Clustering

Clustering: Grouping a set of data in such a way 

that data in the same cluster are more similar to 

each other than to those in other clusters.



6

 Distance Metrics

Clustering

• Euclidean distance

• 𝑑𝑒 𝑥, 𝑦 = σ𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

2

• Sum of squared distance

• 𝑑𝑞 𝑥, 𝑦 = σ𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

2

• Manhattan distance

• 𝑑𝑚 𝑥, 𝑦 = σ𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

• Chebyshev distance

• 𝑑𝑐 𝑥, 𝑦 max
𝑖=1,⋯,𝑛

𝑥𝑖 − 𝑦𝑖

A

B
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 K-means Clustering

Clustering

◼ K-means clustering is a sort of 
clustering algorithm, and it is 
popular for cluster analysis in data 
mining. 

◼ K-means clustering aims to partition 
N observations into K clusters in 
which each observation belongs to 
the cluster with the nearest mean, 
serving as a prototype of the cluster.
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 K-means Clustering

Clustering

◼ High intra-clustering similarity

◼ Low inter-clustering similarity.

◼ So,

𝑜𝑏𝑗𝑒𝑐𝑡 ∶ ෍

𝑖=1

𝑁

min
𝑢𝑗∈𝐶

𝑥𝑖 − 𝑢𝑗
2
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Clustering

 K-means Clustering

First the k cluster midpoints μ1, . . . ,μk

are randomly or manually initialized.

*

*

e.g. k =2
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Clustering

 K-means Clustering

*

⚫ Classify all data to their nearest 

cluster midpoint.

Then the following two steps are 

repeatedly carried out:

e.g. k =2



⚫ Classify all data to their nearest 

cluster midpoint.

11

Clustering

 K-means Clustering Then the following two steps are 

repeatedly carried out:
e.g. k =2
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Clustering

 K-means Clustering

⚫ Re-compute of the cluster midpoint.

Then the following two steps are 

repeatedly carried out:

e.g. k =2

*

*
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Clustering

 K-means Clustering

⚫ Classify all data to their nearest 

cluster midpoint.

Then the following two steps are 

repeatedly carried out:e.g. k =2

*

*

*

*
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Clustering

 K-means Clustering

*

*

The algorithm converges

⚫ Re-compute of the cluster midpoint.

Then the following two steps are 

repeatedly carried out:e.g. k =2
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Clustering

 K-means Clustering

⚫ Initialize the midpoints

⚫ Repeat the following 2 steps

• Classify all data to their nearest cluster 

midpoint.

• Re-compute of the cluster midpoint.

⚫ Until the algorithm converges

The following two steps are repeatedly carried out:
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Clustering

 K-means Clustering  --  Example

𝑋 =
0 
2 

0 
0 

1 
0 

5 
0 

5 
2 

Try to cluster these samples X by k-means clustering, when k =2,

⚫ Initialize the midpoints

⚫ Repeat the following 2 steps

• Classify all data to their nearest cluster midpoint.

• Re-compute of the cluster midpoint.

⚫ Until the algorithm converges
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Clustering

 K-means Clustering  --  Example

𝑋 =
0 
2 

0 
0 

1 
0 

5 
0 

5 
2 

Try to cluster these samples X by k-means clustering, when k =2,

Step 1: First the k cluster midpoints μ1, . . . ,μk are randomly or 

manually initialized.

→ Suppose 𝑚1
(0)

= 0, 2 𝑇  𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝐺1
0

,

𝑚2
(0)

= 0, 0 𝑇 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝐺2
0
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Clustering

 K-means Clustering  --  Example

𝑋 =
0 
2 

0 
0 

1 
0 

5 
0 

5 
2 

Try to cluster these samples X by k-means clustering, when k =2,

Step 2: Classify all data to their nearest cluster midpoint.

           → Calculate the distance from 𝑥3 = 1, 0 𝑇 , 𝑥4 = 5, 0 𝑇 , 𝑥5 =

5, 2 T to  the midpoints 𝑚1
(0)

, 𝑚2
(0)

 :

𝑥3 = 1, 0 𝑇 , 𝑑 𝑥3, 𝑚1
0

= 5, 𝑑 𝑥3, 𝑚2
0

= 1, So x3 is 𝐺2
(0)

.

𝑥4 = 5, 5 𝑇 , 𝑑 𝑥4, 𝑚1
0

= 29, 𝑑 𝑥3, 𝑚2
0

= 25, So x4 is 𝐺2
(0)

.

𝑥5 = 5, 2 T, 𝑑 𝑥5, 𝑚1
0

= 25, 𝑑 𝑥3, 𝑚2
0

= 29, So x5 is 𝐺1
(0)

.
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Clustering

 K-means Clustering  --  Example

𝑋 =
0 
2 

0 
0 

1 
0 

5 
0 

5 
2 

Try to cluster these samples X by k-means clustering, when k =2,

Step 3: New cluster 𝐺1
1

= {x1, x5} and 𝐺2
1

= x2, x3, x4 . So, re-

compute of the cluster midpoint.

→ 𝑚1
(1)

= 2.5, 2.0 𝑇  𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝐺1
1

,

𝑚2
(1)

= 2, 0 𝑇 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝐺2
1
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Clustering

 K-means Clustering  --  Example

𝑋 =
0 
2 

0 
0 

1 
0 

5 
0 

5 
2 

Try to cluster these samples X by k-means clustering, when k =2,

Step 4: Repeat step 2 and step 3

→ Have new clusters 𝐺1
2

= {x1, x5} and 𝐺2
2

= x2, x3, x4 . 

Because the clusters is not change, the clustering stops! The final 

results is:

𝐺1
∗ = {x1, x5} and 𝐺2

∗ = x2, x3, x4 .
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Clustering

 K-means Clustering --- Example

plot(X(1,:),X(2,:),'o')
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Clustering

 K-means Clustering --- Example

IDX = kmeans(X,2);
…… % plot the results
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Clustering

 K-means Clustering --- Example

IDX = kmeans(X,3);
…… % plot the results

Result 1 Result 2

The results are different!
Why?
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 K-means Clustering -Example

Clustering

Clustering 

K=2?

K=4?
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 K-means Clustering -Example

Clustering

K=2

By color

By shape By size
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 K-means Clustering -Example

Clustering

K=4

By color, shape

By shape, size By color, size
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Clustering

 K-means Clustering --- Disadvantage

• 1. Time complexity:

• O(NKT), where N is the number of data, K is the 
number of clusters, and T is the number of iterations.

• 2. Sensitive to noise

• 3. Different results are obtained with different initial centers.
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Clustering

 K-means Clustering --- Example

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Dataset exhibits complex cluster 

shapes

 K-means performs very poorly in 

this space due bias toward dense 

spherical clusters.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.709 -0.7085 -0.708 -0.7075 -0.707 -0.7065 -0.706

In the embedded space given by 

two leading eigenvectors, clusters 

are trivial to separate.
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Clustering

 Spectral Clustering

◼Algorithms that cluster points using eigenvectors 

of matrices derived from the data.

◼Obtain data representation in the low-

dimensional space that can be easily clustered.

◼Variety of methods that use the eigenvectors 

differently

◼Disadvantage: difficult to understand….
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Clustering

 Spectral Clustering

• Three basic stages:
1. Pre-processing

• Construct a matrix representation of the dataset.

2. Decomposition

• Compute eigenvalues and eigenvectors of the matrix.

• Map each point to a lower-dimensional representation 

based on one or more eigenvectors.

3. Grouping

• Assign points to two or more clusters (e.g. by k means 

method), based on the new representation.
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Clustering

 Spectral Clustering

1 . Pre-processing
• Construct a matrix 

representation of the dataset. 
(Build Laplacian matrix L)

0.90.80.5-0.2-0.70.4

-0.2-0.6-0.8-0.4-0.70.4

-0.6-0.40.20.9-0.40.4

0.6-0.20.0-0.20.20.4

0.30.4-0.0.10.20.4

-0.9-0.20.40.10.20.4

3.0

2.5

2.3

2.2

0.4

0.0

Λ = X =

2. Decomposition

– Find eigenvalues Λ
and eigenvectors X
of the matrix L

– Map vertices to corresponding 
components of smallest two 
eigenvalues.

x1 x2 x3 x4 x5 x6

x1 1.5 -0.8 -0.6 0 -0.1 0

x2 -0.8 1.6 -0.8 0 0 0

x3 -0.6 -0.8 1.6 -0.2 0 0

x4 0 0 -0.2 1.7 -0.8 -0.7

x5 -0.1 0 0 -0.8 1.7 -0.8

x6 0 0 0 -0.7 -0.8 1.5

It is easier to divide these six points into 

two clusters using this new representation.
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Clustering

 Spectral Clustering—Applications: image clustering
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Clustering

 Spectral Clustering ---Applications: Motion segmentation



Unsupervised learning

• Clustering

• K-means method

• Spectral clustering

• Representation learning

34
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Representation Learning

 Representation = re + presentation

Raw data Representation

Coding



Unsupervised learning

• Clustering

• K-means method

• Spectral clustering

• Representation learning

•  Linear coding

•  PCA

• Applications

36
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Representation Learning

 Linear coding

representation

y A

x

e.g.
𝑦 =

0.75
0.27
0.3

=
1 0 0.5

0.2 0.1 0
0 0.1 1

0.1 0 0
0.1 1 0
0.2 0.1 1

⋅

0.6
0
0

1.5
0
0

A: “dictionary”
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Representation Learning

 Linear coding
representation

Considering the solution to the linear equation:

If m>n => overdetermined => no solution / unique solution

If m<n => underdetermined => no solution / infinite solutions

y A

x

𝑦 = 𝐴𝑥 ∈ 𝑅𝑚



Unsupervised learning

• Clustering

• K-means method

• Spectral clustering

• Representation learning

•  Linear coding

•  PCA

• Applications

39
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Representation Learning

• Linear Feature Extraction

➢Given the original 𝑑-dimension feature space 𝑋 = (𝒙1, 𝒙2, … , 𝒙𝑚) ∈ ℝ𝑑×𝑚

➢Get the reduced 𝑑′-dimension feature space 𝑍 = (𝒛1, 𝒛2, … , 𝒛𝑚) ∈ ℝ𝑑′×𝑚 
after transformation (𝑑′ < 𝑑) 

➢Transformation process:
𝑍 = 𝑾𝑇𝑋

Where 𝑾 = (𝒘1, 𝒘2, … , 𝒘𝑑′) ∈ ℝ𝑑×𝑑′
 is the transformation matrix, 𝒘𝑖 ∈ ℝ𝑑×1, and 

𝑍 ∈ ℝ𝑑′×𝑚 is the coordinate expression of sample 𝑋 in low dimension space.

➢If 𝒘𝑖
𝑇𝒘𝑗 = 0(i ≠ 𝑗), then 𝒘𝑖 is orthogonal to 𝒘𝑗 (𝒘𝑖 is independent from 

𝒘𝑗), the new coordinate system {𝒘1, 𝒘2, … , 𝒘𝑑′} is orthogonal, and 𝑾 is the 

orthogonal matrix.
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Representation Learning

 Principal Component Analysis (PCA)

⚫ Linear combination of original features: use the orthogonal

transform matrix 𝑾 to transform the 𝑑 relevant features into

𝑑′ (𝑑′ < 𝑑) irrelevant features. These 𝑑′ irrelevant features

are called principal components for classification.

⚫ Use principal components to approximate the original sample.

⚫ Realize the dimension reduction by replace original sample

using few principal components.
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Representation Learning

 Principal Component Analysis (PCA)
• Minimize reconstruction error (residual): the sample ෥𝒙 reconstructed

from the reduced (projected) space is close enough to the original sample 𝒙.

• Maximum class separability (variance): ensure that projected data from
different classes can be separated well.
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Representation Learning

 Principal Component Analysis (PCA)

• Minimize reconstruction error

➢Data standardization. Centralization the original data (subtract mean vector). 

That is, set 𝒙𝑖 = 𝒙𝑖 −
1

𝑚
σ𝑖=1

𝑚 𝒙𝑖, then σ𝑖=1
𝑚 𝒙𝑖 = 0, 𝒙𝑖 ∈ ℝ𝑑×1.

➢Assume transformation matrix 𝑾 = (𝒘1, 𝒘2, … , 𝒘𝑑′) ∈ ℝ𝑑×𝑑′
, 𝒘𝑖 ∈ ℝ𝑑×1

is the standard orthogonal basis vector. That is, 𝒘𝑖 2 = 1, 𝑾𝑇𝑾 = 𝑰，
𝒘𝑖

𝑇𝒘𝑗 = 0(𝑖 ≠ 𝑗).

➢The projection of 𝒙𝑖 in low dimension coordinate system is 𝒛𝑖 = 𝑾𝑇𝒙𝑖, 𝒛𝑖 =
𝑧𝑖1; 𝑧𝑖2; … ; 𝑧𝑖𝑑′ ∈ ℝ𝑑′×1. Where 𝑧𝑖𝑗 = 𝒘𝑗

𝑇𝒙𝑖 is the jth-coordinate of 𝒙𝑖 in

low dimension space.

➢Reconstruct 𝒙𝑖 by 𝒛𝑖, then ෥𝒙𝑖 = σ𝑗=1
𝑑′

𝑧𝑖𝑗𝒘𝑗

Minimize reconstruction error : ෥𝒙𝑖 , 𝒙𝑖  



44

Representation Learning

 Principal Component Analysis (PCA)

• Minimize reconstruction error

➢For the entire training set, the distance between original sample 𝒙𝑖
and reconstructed sample ෥𝒙𝑖 is

෍

𝑖=1

𝑚

෥𝒙𝑖 − 𝒙𝑖 2
2 = − ෍

𝑖=1

𝑚

𝒛𝑖
𝑇𝒛𝑖 + ෍

𝑖=1

𝑚

𝒙𝑖
𝑇𝒙𝑖

∝ −𝑡𝑟 𝑾𝑇 ෍

𝑖=1

𝑚

𝒙𝑖𝒙𝑖
𝑇 𝑾

➢Take minimizing the reconstruction distance as the objective 
function, since σ𝑖=1

𝑚 𝒙𝑖𝒙𝑖
𝑇 is the covariance matrix 𝑿𝑿𝑇, then the 

objective function is

min
𝑾

−𝑡𝑟 𝑾𝑇𝑿𝑿𝑇𝑾

𝑠. 𝑡. 𝑾𝑇𝑾 = 𝑰

𝑡𝑟 𝐴 = ෍

𝑖=1

𝑛

𝑎𝑖𝑖
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Representation Learning

 Principal Component Analysis (PCA)

• Proof

෍

𝑖=1

𝑚

ෝ𝒙𝑖 − 𝒙𝑖 2
2 = ෍

𝑖=1

𝑚

෍

𝑗=1

𝑑′

𝑧𝑖𝑗𝒘𝑗 − 𝒙𝑖

2

2

= ෍

𝑖=1

𝑚

𝑾𝒛𝑖 − 𝒙𝑖 2
2

= ෍

𝑖=1

𝑚

𝑾𝒛𝑖 − 𝒙𝑖
𝑇(𝑾𝒛𝑖 − 𝒙𝑖)

= − ෍

𝑖=1

𝑚

𝒛𝑖
𝑇𝒛𝑖 + ෍

𝑖=1

𝑚

𝒙𝑖
𝑇𝒙𝑖

= − ෍

𝑖=1

𝑚

𝑡𝑟 𝒛𝑖𝒛𝑖
𝑇 + const

= −𝑡𝑟 ෍

𝑖=1

𝑚

𝒛𝑖𝒛𝑖
𝑇 + const

= −𝑡𝑟 ෍

𝑖=1

𝑚

𝑾𝑇𝒙𝑖𝒙𝑖
𝑇𝑾 + const

≈ −𝑡𝑟 𝑾𝑇 ෍

𝑖=1

𝑚

𝒙𝑖𝒙𝑖
𝑇 𝑾 + const

∝ −𝑡𝑟 𝑾𝑇 ෍

𝑖=1

𝑚

𝒙𝑖𝒙𝑖
𝑇 𝑾
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Representation Learning

 Principal Component Analysis (PCA)

• Maximum class separability
max

𝑾
𝑡𝑟 𝑾𝑇𝑿𝑿𝑇𝑾

𝑠. 𝑡. 𝑾𝑇𝑾 = 𝑰

min
𝑾

−𝑡𝑟 𝑾𝑇𝑿𝑿𝑇𝑾

𝑠. 𝑡. 𝑾𝑇𝑾 = 𝑰
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Representation Learning

 Principal Component Analysis (PCA)

Solve PCA to get 𝑾 = (𝒘𝟏, 𝒘𝟐, … , 𝒘𝒅′)
min

𝑾
−𝑡𝑟 𝑾𝑇𝑿𝑿𝑇𝑾

𝑠. 𝑡. 𝑾𝑇𝑾 = 𝑰

Where 𝑿 = 𝒙1, 𝒙2, … , 𝒙𝑚 ∈ ℝ𝑑×𝒎 , 𝑾 = 𝒘1, 𝒘2, … , 𝒘𝑑′ ∈ ℝ𝑑×𝑑′
, 𝑰 ∈ ℝ𝑑′×𝑑′

• S1. Define the Lagrange function using Lagrange multiplier matrix 𝜦 =

𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑑′) ∈ ℝ𝑑′×𝑑′
, 𝜦 is the diagonal matrix.

𝐿 𝑾, 𝜦 = −𝑡𝑟 𝑾𝑇𝑿𝑿𝑇𝑾 + 𝑡𝑟 𝜦𝑇 𝑾𝑇𝑾 − 𝑰

• S2. Set the partial of 𝐿 𝑾, 𝜦  on 𝑾 as 0.
𝜕𝐿 𝑾, 𝜦

𝜕𝑾
= −2𝑿𝑿𝑇𝑾 + 𝟐𝑾𝜦 = 𝟎

𝑿𝑿𝑇𝑾 = 𝑾𝜦
𝑿𝑿𝑇𝒘𝑖 = 𝜆𝑖𝒘𝑖

The definition of eigenvalue 

and eigenvector for matrix. 

Then 𝑿𝑿𝑇 = 𝑾𝜦𝑾𝑻

Solve eigenvalue 𝜦 and corresponding eigenvector 𝑾 for matrix 𝑿𝑿𝑇
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Representation Learning

 Principal Component Analysis (PCA)

• Process to implement dimension reduction using PCA

• S1: Standardization. 𝒙𝑖 = 𝒙𝑖 −
1

𝑚
σ𝑖=1

𝑚 𝒙𝑖

• S2: Compute the covariance matrix 
𝟏

𝑚
𝑿𝑿𝑇

• S3: Eigenvalue decompose the matrix 
𝟏

𝑚
𝑿𝑿𝑇

• S4: Take the top maximum 𝑑′ eigenvalues and corresponding 
eigenvectors 𝒘1, 𝒘2, … , 𝒘𝑑′

• S5: Get the transformation matrix 𝑾 = 𝒘1, 𝒘2, … , 𝒘𝑑′ , and output the 
reduced feature vectors 𝒛𝑖 for original samples.
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Representation Learning

 Principal Component Analysis (PCA)
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Representation Learning

 Principal Component Analysis (PCA)

Example

• Problem: Given the original sample set 𝑿 = 𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5 =
−1
−2

−1
0

0
0

2
1

0
1

. Reduce sample from 2-D to 1-D using PCA.
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Representation Learning

Answer:

• S1. Standardization. The mean vector 
1

𝑚
σ𝑖=1

𝑚 𝒙𝑖 = 0

• S2. Compute covariance matrix 𝑨 =
1

5
𝑿𝑿𝑇 =

1

5

6 4
4 6

• S3. Eigenvalue decompose.

(1) Solve Eigenvalue by 𝜆𝐼 − 𝑨 = 0

𝜆𝐼 − 𝑨 =
𝜆 −

6

5
−

4

5

−
4

5
𝜆 −

6

5

= (𝜆 −
6

5
)2−

16

25
= 𝜆 − 2 𝜆 −

2

5
= 0

𝜆1 = 2，𝜆2 =
2

5

(2) Solve Eigenvector by 𝜆𝐼 − 𝐴 𝒘 = 𝟎

𝜆1 = 2 → 𝒘1 = 1
1

,    𝜆2 =
2

5
→ 𝒘2 = −1

1
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Representation Learning

• S4. Rank the eigenvalues, and select top 𝑑′ = 1 eigenvalue 
𝜆1 and its corresponding eigenvector 𝒘1. Standardization 

eigenvector to get  𝒘1 =
1

2

1
1

• S5. Dimension reduction.

𝑍 = 𝑊𝑇𝑋 = (−
3

2
−

1

2
0

3

2

1

2
)



Unsupervised learning

• Clustering

• K-means method

• Spectral clustering

• Representation learning

•  Linear coding

•  PCA

• Others

• Applications

61
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Representation Learning

 Applications

Source image JPEG image K-SVD imageJPEG2000 image

Facial Image Compression
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Representation Learning

 Applications

Image Deblurring

Source image Blurred image After deblurring
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Representation Learning

 Applications

Source image Noisy image Denoising result

Image Denoising
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Representation Learning

 Applications

Morphological Component Analysis

Source image Texture component Cartoon component
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Representation Learning

 Applications

Image Inpainting

Source image Degraded image Inpainting result
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Representation Learning

Have a try…

◼ Generate some points in two-dimensional plane. 

◼ Try to design the k-means clustering algorithm or 

spectral clustering algorithm to cluster these 

points.

◼ Compare the results.
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Machine Learning

Supervised 
learning

Unsupervised 
learning

Reinforcement 
learning



Introduction to Reinforcement learning

• Reinforcement learning

• Q-Learning

69
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Reinforcement learning

 Reinforcement Learning

◼ “AI=RL” by David Silver

◼Agent-oriented learning—learning 

by interacting with an environment 

to achieve a goal

◼Learning by trial and error, with only 

delayed evaluative feedback (reward)
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1. Different ML methods

 Reinforcement Learning

◼ Game Pong ◼ Game Breakout
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1. Different ML methods

 Reinforcement Learning

Game Breakout

player

joystick

Breakout

screen

Score

① ②

③

④

⑤

environment

reward 𝑟

① ②

③

④

state 𝑠 action 𝑎

agent

⑤
◼ Rules are unknown

◼ Learn directly from the interaction

At each time step t:

① Agent receives state 𝒔(𝒕)
② Agent executes an action 𝒂(𝒕) by 

his action policy 𝝅(𝑠(𝑡))
③ Environment emits a immediate 

reward 𝒓(𝒕 + 𝟏) to agent

④ Environment changes its state to 

𝒔(𝒕 + 𝟏)
⑤ Agent improves his policy 𝝅(𝒔)

according to the reward.

ቊ
< 𝑠, 𝑎, 𝑟, 𝑠′ >

𝑠 ← 𝑠′Reinforcement Learning
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Reinforcement learning

◼RL problem can be described as a Markov decision process

◼The future is independent of the past given the present

◼One episode of this process forms a finite sequence : 

𝑠 0 , 𝑎 0 , 𝑟 1 , 𝑠 1 , 𝑎 1 , 𝑟 2 , ⋯ ⋯ , 𝑠 𝑛 − 1 ,
𝑎(𝑛 − 1), 𝑟(𝑛), 𝑠(𝑛)

ቊ
< 𝑠, 𝑎, 𝑟, 𝑠′ >

𝑠 ← 𝑠′

◼ The agent are always trying to get the maximum rewards 

through policy 𝜋(𝑠)

Question: How to define the maximum reward ?
environment

reward 𝒓

① ②

③

④

state 𝒔 action 𝒂

agent

⑤
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Reinforcement learning

One episode of this process forms a finite sequence of states, actions, and rewards:

𝑠(0), 𝑎(0), 𝑟(1), 𝑠(1), 𝑎(1), 𝑟(2), ⋯ ⋯ , 𝑠(𝑛 − 1), 𝑎(𝑛 − 1), 𝑟(𝑛), 𝑠(𝑛)

Question: How can agent get the maximum reward ?

◼Total reward of one episode:

𝑅 = 𝑟(1) + 𝑟(2) + 𝑟(3) + ⋯ ⋯ 𝑟(𝑛 − 1) + 𝑟(𝑛)

◼Total future reward from time step 𝑡 :

𝑅(𝑡)

= 𝑟(𝑡) + 𝑟(𝑡 + 1) + 𝑟(𝑡 + 2) + ⋯ ⋯ 𝑟(𝑛 − 1) + 𝑟(𝑛)

◼Discounted future reward reward from time step 𝑡 :

𝑅(𝑡) = 𝑟(𝑡) + 𝛾𝑟(𝑡 + 1) + 𝛾2𝑟(𝑡 + 2) + ⋯ ⋯ + 𝛾𝑛−𝑡𝑟n

environment

reward 𝒓

① ②

③

④

state 

𝒔
action 𝒂

agent

⑤



75

Reinforcement learning

Question: How can agent get the maximum reward ?

At each time step, a good strategy for an agent would be to 

always choose an action that maximizes the (discounted) future 

reward.

𝑅 𝑡
= 𝑟 𝑡 + 𝛾𝑟 𝑡 + 1 + 𝛾2𝑟 𝑡 + 2 + ⋯ ⋯ + 𝛾𝑛−𝑡𝑟n 𝑡
= 𝑟(𝑡) + 𝛾𝑅(𝑡 + 1)

𝑅 = 𝑟(1) + 𝑟(2) + 𝑟(3) + ⋯ ⋯ 𝑟(𝑛 − 1) + 𝑟(𝑛)
𝑅 𝑡 = 𝑟 1 + 𝑟 2 + 𝑟 3 + ⋯ 𝑟 𝑡 − 1 + 𝑅(𝑡)

past reward future reward



Introduction to Reinforcement learning

• Reinforcement learning

• Q-Learning

76
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Q-Learning

◼Q function represents the “quality” of a certain action in a 

given state.

◼It is a table of states and actions.

𝑄(𝑠 𝑡 , 𝑎(𝑡)) = 𝑚𝑎𝑥𝑅(𝑡 + 1)

𝜋(𝑠(𝑡)) = max
𝑎

𝑄(𝑠(𝑡), 𝑎)

choose an action that maximizes the future reward.

Q-table

𝑄 𝑠, 𝑎 𝒂𝟏 𝒂𝟐 ⋯ 𝒂𝒎

𝒔𝟏

𝒔𝟐

𝒔𝟑

⋮

𝒔𝒏
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Q-Learning

◼Bellman equation :

𝑄(𝑠 𝑡 , 𝑎(𝑡)) = max𝑅(𝑡 + 1)

𝑄 𝑠 𝑡 , 𝑎 𝑡 = 𝑟 𝑡 + 1 + 𝛾max𝑅(𝑡 + 2)

𝑄 𝑠 𝑡 , 𝑎 𝑡 = 𝑟 𝑡 + 1 + 𝛾 max
𝑎 𝑡+1

𝑄 𝑠 𝑡 + 1 , 𝑎 𝑡 + 1

𝑄 s, 𝑎 = 𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′)

𝑅(𝑡 + 1) = 𝑟(𝑡 + 1) + 𝛾𝑅(𝑡 + 2)

current reward maximum future 

reward from 

next state

< 𝑠(𝑡), 𝑎(𝑡), 𝑟(𝑡 + 1), 𝑠(𝑡 + 1) >

𝑠

𝑠′

𝑎 𝑟

𝑎1 𝑎2 𝑎𝑚

𝑄(𝑠′, 𝑎1) 𝑄(𝑠′, 𝑎2) 𝑄(𝑠′, 𝑎𝑚)

⋯

⋯
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Q-Learning

Q-table

1. Algorithm Q-Learning

2. Input:

1. 𝑆 is a set of states

2. 𝐴 is a set of actions

3. 𝛾 is the discount

3. initialize 𝑄[𝑆, 𝐴] arbitrarily

4. observe initial state 𝑠
5. Repeat:

1. select and carry out an action 𝑎, randomly

2. receive reward 𝑟
3. observe new state 𝑠′

4. If 𝑠′ is terminal state:

1. 𝑄 𝑠, 𝑎 = 𝑟
5. Else: 

1. 𝑄 𝑠, 𝑎 = 𝑟 + 𝛾 max
𝑎′

𝑄[𝑠′, 𝑎′]

6. 𝑠 ← 𝑠′ 

6. Until terminated

𝑄 𝑠, 𝑎 𝒂𝟏 𝒂𝟐 ⋯ 𝒂𝒎

𝒔𝟏

𝒔𝟐

𝒔𝟑

⋮

𝒔𝒏

ቊ
< 𝑠, 𝑎, 𝑟, 𝑠′ >

𝑠 ← 𝑠′
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Q-Learning

A tiny example:

Game description

States:

𝑠1, 𝑠2, 𝑠3, where 𝑠3 is terminal state 

Actions:

𝑎1 denotes up. The agent goes up 

and moves to terminal state. 

𝑎2 denotes left. The agent moves to 

left in state 𝑠2 with a reward −0.2, 

while stay still in state 𝑠1 with a 

reward −0.1.

𝑎3 denotes right. The agent moves to 

right in state 𝑠1 with a reward 0.2, 

while stay still in state 𝑠2 with a 

reward −0.1.

Move up/left/right

𝑠1 𝑠2

𝑠3
-0.2 0.1

-0.2

+0.2
-0.1-0.1
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Q-Learning

𝑄 𝑠, 𝑎 𝒂𝟏

up
𝒂𝟐

left
𝒂3

right

𝒔𝟏

𝒔𝟐

𝒔𝟑 - - -

Algorithm Q-Learning
Input:

𝑆 is a set of states
𝐴 is a set of actions
𝛾 is the discount

initialize 𝑄[𝑆, 𝐴] arbitrarily
observe initial state 𝑠
Repeat:

select and carry out an action 𝑎, randomly
receive reward 𝑟
observe new state 𝑠′

If 𝑠′ is terminal state:
𝑄 𝑠, 𝑎 = 𝑟

Else: 
𝑄 𝑠, 𝑎 = 𝑟 + 𝛾 max

𝑎′
𝑄[𝑠′, 𝑎′]

𝑠 ← 𝑠′ 
Until terminated

Move up/left/right
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Q-Learning

𝑄 𝑠, 𝑎 𝒂𝟏

up
𝒂𝟐

left
𝒂3

right

𝒔𝟏 0.60 0.74 0.94

𝒔𝟐 0.36 0.32 0.78

𝒔𝟑 - - -1st episode:

𝑠 0 = 𝑠1, 𝑎 0 = 𝑎3, 𝑟 1 = 0.2, 𝑠 1 = 𝑠2 , 𝑎 1 = 𝑎3, 𝑟 2 = −0.1, 𝑠 2 = 𝑠2 , 𝑎 2 = 𝑎1, 𝑟 3 = 0.1, 𝑠 3 = 𝑠3

𝑄 𝑠, 𝑎 𝒂𝟏

up
𝒂𝟐

left
𝒂3

right

𝒔𝟏 0.60 0.74 0.82

𝒔𝟐 0.36 0.32 0.78

𝒔𝟑 - - -

𝑄 𝑠1, 𝑎3 = 0.2 + 0.8 ∗ max
𝑎𝑖

(𝑄 𝑠2, 𝑎𝑖 )

𝑄 𝑠1, 𝑎3 = 0.2 + 0.8 ∗ 0.78
= 0.82

𝑄 𝑠2, 𝑎3 = −0.1 + 0.8 ∗ max
𝑎𝑖

(𝑄 𝑠2, 𝑎𝑖 )

𝑄 𝑠1, 𝑎3 = −0.1 + 0.8 ∗ 0.78
= 0.52

𝑄 𝑠2, 𝑎1 = 0.1

initialize 
𝑄[𝑆, 𝐴]

𝛾 = 0.8

𝑄 𝑠, 𝑎 𝒂𝟏

up
𝒂𝟐

left
𝒂3

right

𝒔𝟏 0.60 0.74 0.82

𝒔𝟐 0.36 0.32 0.52

𝒔𝟑 - - -

𝑄 𝑠, 𝑎 𝒂𝟏

up
𝒂𝟐

left
𝒂3

right

𝒔𝟏 0.60 0.74 0.82

𝒔𝟐 0.1 0.32 0.52

𝒔𝟑 - - -

◼ Step 1:

◼ Step 2:training loop

𝑠1 𝑠2

𝑠3
-0.2 0.1

-0.2

+0.2
-0.1-0.1

𝑄 s, 𝑎 = 𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′)
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Q-Learning

𝑄 𝑠, 𝑎 𝒂𝟏

up
𝒂𝟐

left
𝒂3

right

𝒔𝟏 -0.2 0.56 0.40

𝒔𝟐 0.10 0.25 0.10

𝒔𝟑 - - -
12st episode:

𝑠 0 = 𝑠1, 𝑎 0 = 𝑎2, 𝑟 1 = −0.1, 𝑠 1 = 𝑠1 , 𝑎 1 = 𝑎1, 𝑟 2 = −0.2, 𝑠 2 = 𝑠3

𝑄 𝑠, 𝑎 𝒂𝟏

up
𝒂𝟐

left
𝒂3

right

𝒔𝟏 -0.20 0.35 0.40

𝒔𝟐 0.10 0.25 0.10

𝒔𝟑 - - -

𝑄 𝑠1, 𝑎2 = −0.1 + 0.8 ∗ max
𝑎𝑖

(𝑄 𝑠1, 𝑎𝑖 )

𝑄 𝑠1, 𝑎3 = −0.1 + 0.8 ∗ 0.56
= 0.35

𝑄 𝑠2, 𝑎1 = −0.2

𝑄 𝑠, 𝑎 𝒂𝟏

up
𝒂𝟐

left
𝒂3

right

𝒔𝟏 -0.20 0.35 0.40

𝒔𝟐 0.10 0.25 0.10

𝒔𝟑 - - -

After 
11th episode

𝑠1 𝑠2

𝑠3
-0.2 0.1

-0.2

+0.2
-0.1-0.1

𝑄 s, 𝑎 = 𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′)
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Q-Learning

After 
15th episode

𝑄 𝑠, 𝑎 𝒂𝟏

up
𝒂𝟐

left
𝒂3

right

𝒔𝟏 -0.20 0.18 0.30

𝒔𝟐 0.10 0.08 -0.00

𝒔𝟑 - - -

After 
50th episode

𝑄 𝑠, 𝑎 𝒂𝟏

up
𝒂𝟐

left
𝒂3

right

𝒔𝟏 -0.20 0.12 0.28

𝒔𝟐 0.10 0.02 -0.02

𝒔𝟑 - - -

After 
100th episode

𝑄 𝑠, 𝑎 𝒂𝟏

up
𝒂𝟐

left
𝒂3

right

𝒔𝟏 -0.20 0.12 0.28

𝒔𝟐 0.10 0.02 -0.02

𝒔𝟑 - - -

After 
1000th episode

𝑄 𝑠, 𝑎 𝒂𝟏

up
𝒂𝟐

left
𝒂3

right

𝒔𝟏 -0.20 0.12 0.28

𝒔𝟐 0.10 0.02 -0.02

𝒔𝟑 - - -

Move up/left/right

𝑠1 𝑠2

𝑠3
-0.2 0.1

-0.2

+0.2
-0.1-0.1
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Q-Learning

Q-table

𝑄 𝑠, 𝑎 𝒂𝟏 𝒂𝟐 ⋯ 𝒂𝒎

𝒔𝟏

𝒔𝟐

𝒔𝟑

⋮

𝒔𝒏

ቊ
< 𝑠, 𝑎, 𝑟, 𝑠′ >

𝑠 ← 𝑠′

< (3 ∗ 256)𝑤𝑥∗ℎ𝑦< 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠

Too huge states space to approximate Q-function iteratively by 

Q-table!!!

𝑤𝑥

ℎ𝑦
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Conclusion – Machine Learning

1. Supervised Learning
⚫ Linear Regression

⚫ Logistic Regression

⚫ Classification

• Distance-based algorithms

• Linear classifiers

• Other classifiers

2. Unsupervised Learning
⚫ Clustering

• K-means method

• Spectral clustering

⚫ Representation learning

3. Reinforcement Learning
⚫ Q-Learning, Q-table

⚫ Exploration & Exploitation
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