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Machine Learning

Supervised Unsupervised
learning learning

Reinforcement
learning




Unsupervised learning

* Clustering

« K-means method
« Spectral clustering

* Representation learning



Clustering




Clustering

[0 Distance Metrics

e Euclidean distance
* do(x,y) = X O — ¥i)?

« Sum of squared distance

» dg(x,y) = X (x — ¥1)?
 Manhattan distance !

° dm(X,Y) — Z?=1|xi _yil

 Chebyshev distance
* de(x,y) max |x; -yl




Clustering

O K-means Clustering
m K-means clustering is a sort of

clustering algorithm, and it is :
popular for cluster analysis in data
mining.

|
-

m K-means clustering aims to partition
N observations into K clusters in
which each observation belongs to

|
L)

)
w

-

the cluster with the nearest mean, s
serving as a prototype of the cluster.



Clustering

O K-means Clustering
m High intra-clustering similarity

m Low inter-clustering similarity. :
m S0,

quC al

N
object :z min”xi — uj”2 -
'E




Clustering

O K-means Clustering e.g. k=2

First the k cluster midpoints g4, . . . 4,
are randomly or manually initialized.



O K-means Clustering

e.g. k=2

Clustering

Then the following two steps are
repeatedly carried out:

e Classify all data to their nearest
cluster midpoint.
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O K-means Clustering
e.g. k=2

Clustering

Then the following two steps are
repeatedly carried out:

e Classify all data to their nearest
cluster midpoint.
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Clustering

Then the following two steps are

O K-means Clustering repeatedly carried out:

e.g. k=2 e Re-compute of the cluster midpoint.
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Clustering

O K-means Clustering _
Then the following two steps are

e.g. k=2 repeatedly carried out:

e Classify all data to their nearest
cluster midpoint.
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Clustering

O K-means Clustering  Then the following two steps are
e.g. k=2 repeatedly carried out:

e Re-compute of the cluster midpoint.

The algorithm converges



Clustering

O K-means Clustering
The following two steps are repeatedly carried out:

e Initialize the midpoints
e Repeat the following 2 steps
- Classify all data to their nearest cluster
midpoint.
- Re-compute of the cluster midpoint.
e Until the algorithm converges

a 15



Clustering

0 K-means Clustering -- Example

Try to cluster these samples X by k-means clustering, when k =2,

00155

X = [2 0002

e Initialize the midpoints

e Repeat the following 2 steps
Classify all data to their nearest cluster midpoint.
Re-compute of the cluster midpoint.

e Until the algorithm converges
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Clustering

0 K-means Clustering -- Example

Try to cluster these samples X by k-means clustering, when k =2,

00155
20002

-

Step 1: First the k cluster midpoints g4, . . . ,u, are randomly or

manually initialized.
—> Suppose m§0) = (0,2)" is the mindpoint of cluster Gl(o),

m{® = (0,0)7 is the mindpoint of cluster G

17



Clustering

0 K-means Clustering -- Example

Try to cluster these samples X by k-means clustering, when k =2,

00155
20002

Step 2: Classify all data to their nearest cluster midpoint.
- Calculate the distance from x; = (1,0)",x, = (5, 0)7, x5 =

(5,2)T to the midpoints m{®”, m'® -
x; = (1,0)7,d (xg,mgo)) =5,d (x3,mgo)) = 1,50 x;is GZ(O).
Xy = (5, S)T,d (x4,m§0)) — 29,d (xg,mgo)) — 25, So X4 1S GZ(O)
xs = (5,2)1,d (xs,mgo)) = 25,d (x3,mgo)) = 29,So x:sis 61(0).

e
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Clustering

0 K-means Clustering -- Example

Try to cluster these samples X by k-means clustering, when k =2,

00155
20002

e

Step 3: New cluster Gl(l) = {x4, X5} and Gz(l) = {X,, X3, X4}. SO, re-
compute of the cluster midpoint.

m{"? = (2,0)7 is the mindpoint of cluster G,

19



Clustering

0 K-means Clustering -- Example

Try to cluster these samples X by k-means clustering, when k =2,

00155
20002

-

Step 4: Repeat step 2 and step 3

> Have new clusters G2 = {x,x5} and G.? = {x,, X3, X4}.

Because the clusters is not change, the clustering stops! The final
results is:
Gik — {Xl' X5} and G; — {Xz,XB,X4}.

20



Clustering

O K-means Clustering --- Example

X x|

- 2x60 double

1 2

1 0.8147 0.9058

2 0.4387 0.3816

plot(X(1,:),X(2,:),'0")

3
0.1270

0.7655

4
0.9134

0.7952

181
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Clustering

O K-means Clustering --- Example

IDX = kmeans(X,2);
...... % plot the results
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Clustering

O K-means Clustering --- Example

IDX = kmeans(X,3);
...... % plot the results

Result 1

The results are different!
Why?

Result 2
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Clustering

0 K-means Clustering -Example

Ao
-~ a

N
/\

Clustering

K=2?

K=47?
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Clustering

0 K-means Clustering -Example
By color

——————————————————————————

__________________________

———————————————————————————————————————————————————

____________________________________________________



Clustering

0 K-means Clustering -Example




Clustering

0 K-means Clustering --- Disadvantage

1. Time complexity:

* O(NKT), where N is the number of data, K is the
number of clusters, and T Is the number of iterations.

e 2. Sensitive to noise
« 3. Different results are obtained with different initial centers.

27



Clustering

O K-means Clustering --- Example

Dataset exhibits complex cluster

* ¢ 9
000000
* *

,, - shapes
R ¢ = K-means performs very poorly in
' e this space due bias toward dense

spherical clusters.

*
ooooo

In the embedded space given by
two leading eigenvectors, clusters

are trivial to separate.

-0.709 -0.7085 -0.708 -0.7075 -0.707 -0.7065 -0.




Clustering

O Spectral Clustering

m Algorithms that cluster points using eigenvectors
of matrices derived from the data.

mObtain data representation in the low-
dimensional space that can be easily clustered.

mVariety of methods that use the eigenvectors
differently

mDisadvantage: difficult to understand....

29



Clustering

O Spectral Clustering

* Three basic stages:
1. Pre-processing
« Construct a matrix representation of the dataset.
2. Decomposition
« Compute eigenvalues and eigenvectors of the matrix.
« Map each point to a lower-dimensional representation
based on one or more eigenvectors.
3. Grouping
e Assign points to two or more clusters (e.g. by k means
method), based on the new representation.

30



Clustering

O Spectral Clustering

1 . Pre-processing

« Construct a matrix
representation of the dataset.
(Build Laplacian matrix L)

2. Decomposition

—  Find eigenvalues /1
and eigenvectors X <: _ |
Of the matrix L 23 04 | 04 | o9 02 | -04 | -06

25 0.4 -0.7 -04 -0.8 -0.6 -0.2

3.0 0.4 -0.7 -0.2 05 08 0.9

—  Map vertices to corresponding 3
components of smallest two i aasier to divi o
) t is easier to divide these six points into
elgenval ues. two clusters using this new representation.
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Clustering

Image clustering

O Spectral Clustering—Applications:
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Clustering

0 Spectral Clustering ---Applications: Motion segmentation

33



Unsupervised learning

* Clustering
« K-means method
« Spectral clustering

 Representation learning

34



Representation Learning

0 Representation = re + presentation

OO0 0o0O0H O
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Representation

$ Raw data
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Unsupervised learning

* Clustering
« K-means method
« Spectral clustering

* Representation learning
* Lineanr coding
« PCA
 Applications

36



Representation Learning

O Linear coding

representation A: “dictionary”

0.27 02 01 0 01 1 Of-

e.q. [0.75] [1 0 05 01 0 0] X
y: —
0.3 0 01 1 02 01 1
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Representation Learning

O Linear coding
representation

y = Ax €
'.

Rm
mxliz n -1
e

y

> gu'n

X
S

m

JEEE ENEEN EECEEE
>
X
ek

Considering the solution to the linear equation:

If m>n => overdetermined => no solution / unique solution
If m<n => underdetermined => no solution / infinite solutions

38



Unsupervised learning

* Clustering
« K-means method
« Spectral clustering

* Representation learning
 Linear coding
* PCA
 Applications

39



Representation Learning

* Linear Feature Extraction
> Given the original d-dimension feature space X = (x1, X5, ..., X;,) € R*™

» Get the reduced d’-dimension feature space Z = (24, 2y, ..., Z;,) € R4 xm
after transformation (d’ < d)

» Transformation process:

Z=WTX
Where W = (wq, Wy, ..., wyr) € R4*4" js the transformation matrix, w; € R%*1, and
Z € RY*™ js the coordinate expression of sample X in low dimension space.

> If wiij = 0(i # j), then w; is orthogonal to w; (w; is independent from
w;), the new coordinate system {wy, wy, ..., w, } Is orthogonal, and W is the
orthogonal matrix. T

2024/11/22 40



Representation Learning

O Principal Component Analysis (PCA)

® Linear combination of original features: use the orthogonal
transform matrix W to transform the d relevant features into
d" (d" < d) irrelevant features. These d’ irrelevant features
are called principal components for classification.

® Use principal components to approximate the original sample.

® Realize the dimension reduction by replace original sample
using few principal components.

41



Representation Learning

O Principal Component Analysis (PCA)

« Minimize reconstruction error (residual): the sample X reconstructed
from the reduced (projected) space is close enough to the original sample x.

« Maximum class separability (variance): ensure that projected data from
different classes can be separated well.

Maximize variance Minimize residuals
(squared distance) (squared distance)
of red dots in in this direction

this direction
42



Representation Learning

O Principal Component Analysis (PCA)

« Minimize reconstruction error
» Data standardization. Centralization the original data (subtract mean vector).
That is, set x; = x; = mox;, then Y™ x; =0, x; € R¥*L,
m

» Assume transformation matrix W = (wy, wy, ..., wy) € R4 w; € R4X1
Is the standard orthogonal basis vector. That is, |lw;ll, =1, WTW =1,
wiw; = 0(i # ).

» The prOJectlon of x; In Iow dimension coordlnate systemisz;, = Wlx;, z; =
(Zi1; Zig; 3 Zyq1) € R4 *1, Where Zjj = w x; is the jth-coordinate of x; in
low dimensmn space.

» Reconstruct Xi by Z;, then %i = Z;l;l ZijW;j

Minimize reconstruction error : X; , x;

43



Representation Learning

O Principal Component Analysis (PCA)
e Minimize reconstruction error

»For the entire training set, the distance between original sample x;
and reconstructed sample x; Is

m m m
D I —xill3 == 2z + ) xlx,
=1 J J

ln=11 =1 tT'(A) —

X —tr (WT (; xixiT> W)

» Take minimizing the reconstruction distance as the objective
function, since Y™, x;x; is the covariance matrix XX7, then the
objective function is

mui,n —tr(WTXXTw)

s.t.WI'W =1 4

n
ajj
i=1



Representation Learning

O Principal Component Analysis (PCA)

* Proof ,
m m || d m
DlIRe=xil3 =D |1 2wy - xif| = > Wz - xil3
=1 =1 ||j=1 i=1

=— Z tr(z;z!") + const

I=m
= —tr (2 ziziT> + const

= —tr (Z WTxix?W> + const
i=1, 1
~ —tr (WT (2 xixiT> W | + const
=1, m
W>

X —tr (WT (Z x; X!

i=1



Representation Learning

O Principal Component Analysis (PCA)

« Maximum class separability
max tr(WTXXTW)

s.t WIW =1

|

mui,n —tr(WTXXTw)
st WIW =1

46



Representation Learning

O Principal Component Analysis (PCA)
Solve PCAtoget W = (wq,wy, ..., wyr)

mmi/n —tr(WTXXTw)

s.t.WIW =1

4 4 14
Where X = (x4, X3, ..., X;p) € R™ W = {wy,w,,...,wy} € R**4 ] € R4 >4

« S1. Define the Lagrange function using Lagrange multiplier matrix A =
diag(Aq, 43, ..., A4') € R4 %" A is the diagonal matrix.
LW, A) = —tr(WTXX™W) + tr(AT(WTW - I))

« S2. Set the partial of L(W, A) on W as 0.

The definition of eigenvalue

oL(W, A) .
———— = 2XX"W+2WA=0
ow
XX'wW =wA
XXTWi = Aiwi

and eigenvector for matrix.
Then XXT = wawT

Solve eigenvalue A and corresponding eigenvector W for matrix XX T

47




Representation Learning

Principal Component Analysis (PCA)

 Process to implement dimension reduction using PCA

. . 1
S1: Standardization. x; = x; — —>.21 X;
e S2: Compute the covariance matrix %XXT

 S3: Eigenvalue decompose the matrix %XXT

« S4: Take the top maximum d’ eigenvalues and corresponding
eigenvectors wi, w, ..., w

e S5: Get the transformation matrix W = {wq, w,, ..., w,r}, and output the
reduced feature vectors z; for original samples.

50



Representation Learning

O Principal Component Analysis (PCA)

1. Find mean vector

&

2. Subtract mean

e

3. Compute covariance
matrix:
S = 5 XX

4. Computer eigenvalues
and eigenvectors of S:
(A1, W1)s0005{AD, D)

Remember the or-
thonormality of u;.

7. Obtain projected points
in low dimension.

4
'
'
L]
1]
i
'

6. Project data to selected
eigenvectors.

5. Pick K eigenvectors w.
highest eigenvalues .

e
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Representation Learning

O Principal Component Analysis (PCA)

Example

 Problem: Given the original sample set X = (x1, X5, X3, X4, X5) =

-1 -1 0 2 0 _
(_2 0 0 1 1).ReducesamplefromZ-Dto1-Duslng PCA.

* Process to implement dimension reduction using PCA

L. 1
 S1: Standardization. x; = x; — =Y., x;
m

: 1
* S2: Compute the covariance matrix — xxT

* S3: Eigenvalue decompose the matrix éx xT

« S4: Take the top maximum d’ eigenvalues and corresponding
eigenvectors wy, Wy, ..., Wy

* S5: Get the transformation matrix W = {wy, w,, ..., w,r}, and output the
reduced feature vectors z; for original samples.

20



Representation Learning

Answer:

o S1. Standardization. The mean vectorizj’-';1 x; =0

« S2. Compute covariance matrix A = —XXT (Z g)

 S3. Eigenvalue decompose.
(1) Solve Eigenvalue bygﬂl — 4}' =0

— — 5 51| _ _EZ_E— — _E —
AL — A s 6| = A=z =0-D(1-¢)=0
5 473
A=2, Ay =2
1= 27y

(2) Solve Eigenvector by (Al — A)w =0
h=2ow =) dp=Eow,= ()

54



Representation Learning

« S4. Rank the eigenvalues, and select top d’ = 1 eigenvalue
A4 and its corresponding eigenvector w,. Standardization

eigenvector to get w, = \/% (7)

« S5. Dimension reduction.
Z=WTX =( Sl 2 1)
V2 2 V2 2

55



Unsupervised learning

* Clustering
« K-means method
« Spectral clustering

* Representation learning
 Linear coding
« PCA
* Others
 Applications

61



Representation Learning

O Applications

Facial Image Compression

™

Source image JPEG image JPEG2000 image K-SVD image
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Representation Learning

OO0 Applications
Image Deblurring

Source image Blurred image After deblurring
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Representation Learning

OO0 Applications

Image Denoising

Source image Noisy image Denoising result
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Representation Learning

10NS

Icat

O Appl

IS

Morphological Component Analys

Cartoon component

Texture component

Source image
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Representation Learning

OO0 Applications

Image Inpainting

Source image Degraded image Inpainting result

66



Representation Learning

Have a try...

m Generate some points in two-dimensional plane.

®m Try to design the k-means clustering algorithm or
spectral clustering algorithm to cluster these
points.

m Compare the results.

67



Machine Learning

Supervised Unsupervised
learning learning

68



Introduction to Reinforcement learning

» Reinforcement learning

* Q-Learning

69



Reinforcement learning

—

0 Reinforcement Learning

B “Al=RL” by David Silver

" Computer Science ™\
/

" teaming

B Agent-oriented learning—Ilearning
by interacting with an environment ‘_ “ | > \/
to aChieve a goal 1 Mathematlcs\ Researeff ; Ion:\‘)ndi‘ﬁ‘o‘nin?\'/

Bounded

\ Psychology /
“ /

M| _earning by trial and error, with only s o
delayed evaluative feedback (reward)
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1. Different ML methods

0 Reinforcement Learning

B Game Pong

B Game Breakout




1. Different ML methods

0 Reinforcement Learning

rBreakout_l

@
Game Breakout

A 4

action a

rgnvwonmen

@
Reinforcement Learning

B Rules are unknown
M |earn directly from the interaction

At each time step t:

(1) Agent receives state s(t)

(2) Agent executes an action a(t) by
his action policy m(s(t))

(@) Environment emits a immediate
reward r(t + 1) to agent

(4) Environment changes its state to
s(t+1)

(5) Agent improves his policy 7(s)
according to the reward.

<s,a,r,s >
s« s’

72




Reinforcement learning

M RL problem can be described as a Markov decision process
M The future is independent of the past given the present
M One episode of this process forms a finite sequence :

5(0),a(0),r(1),s(1),a(1),r(2),----- ,s(n—1),
an—1),r(n),s(n)

<s,ar1,s >
s« s’

B The agent are always trying to get the maximum rewards ~ sttes rewardr actiona
through policy m(s)

Question: How to define the maximum reward ?

73



Reinforcement learning

One episode of this process forms a finite sequence of states, actions, and rewards:
5(0),a(0),r(1),s(1),a(1),r(2),----- ,s(n—1),a(n — 1), r(n),s(n)
M Total reward of one episode:
R=r(1)+r2)+7r3)+ - rn—1)+r(n)

M Total future reward from time step ¢ :

R (t) state reward@r action a
s 4
=r@)+r@t+1)+rt+2)+--- rn—1)+r(n) 4 e
ergicdmtont
M Discounted future reward reward from time step ¢ : ]

Rt)=r@®)+yr(t+ 1) +y*rt+2)+ - +y" i,

Question: How can agent get the maximum reward ?

74



Reinforcement learning

Question: How can agent get the maximum reward ?

R=r()+r2)+7r3)+ - r(n—1)+r(n)
= TQ) +r(2) +r(3) + ---r(tj— 1) + R(‘t\)
'

past reward future reward

At each time step, a good strategy for an agent would be to
always choose an action that maximizes the (discounted) future
reward.

R(t)
=r(t) +yr(t+ 1) +y%r(t+2) + - + ¥y i ()
=7r(t)+yR(t+1)

75



Introduction to Reinforcement learning

 Reinforcement learning

* Q-Learning

76



Q-Learning

B(Q function represents the “quality” of a certain action in a

given state.
MBIt is a table of states and actions.

Q(s(t),a(t)) = maxR(t + 1)

n(s(t)) = max Q(s(¢), a)

choose an action that maximizes the future reward.

Q[s, al

S1

S2

S3

77



Q-Learning

B Bellman equation : <s(t),a(t),rt+1),s(t+1)>

Q(s(t),a(t)) =maxR(t + 1)

$ /‘ :r
Q(s(®),a(t)) = r(t + 1) + ymaxR(t + 2) RE+D=rt+D+yRE+D)

\
Q(s(®),a(®) =rt+ 1D +y nax Q(s(t+ 1),a(t+ 1))
\ 4

Q(s,a) =7 +ymaxQ(s',a’)

e .

current reward maximum future
reward from
next state




Q-Learning

<s,ar,s >
s s’
Q-table
Qls,al aq  ay am
S1
$2
S3
Sn

1. Algorithm Q-Learning
Input:

1. Sisa set of states

Z. Ais aset of actions

3. y Is the discount
Initialize Q[S, A] arbitrarily
observe initial state s
Repeat:

2.

>~ w

1.

S.

select and carry out an action a, randomly

2. receive reward r
3.
4. If s’ is terminal state:

observe new state s’

1. Qls,al =71
Else:
1. Q[s,a] =7 +ymaxQ[s’,a’]

6. s« s’
Until terminated

/9



Q-Learning

A tiny example:

Game description

States:

S1,S7, S3, Where s5 is terminal state
Actions:

a, denotes up. The agent goes up
and moves to terminal state.

@

a, denotes left. The agent moves to »
left in state s, with a reward —0.2, +

while stay still in state s, with a Move up/left/right
reward —0.1. o

a3 denotes right. The agent moves to »ﬁ'

right in state s; with a reward 0.2,
while stay still in state s, with a
reward —0.1.

80



Q-Learning

Move up/left/right

4

-,
]

Qls,al | a1 | az | a;
up | left | right
S1
S2
S3 - - -

Algorithm Q-Learning
Input:
S is a set of states
A is a set of actions
y is the discount
initialize Q[S, A] arbitrarily
observe initial state s
Repeat:
select and carry out an action a, randomly
receive reward r
observe new state s’
If s" is terminal state:
Qls,al =7
Else:
Qls,al =r+y rrzle}xQ[s’, a'l

s« s’
Until terminated
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Q-Learning

B Step1: initialize
Q[S, A]

y =038

W Step 2:training loop
15t episode:

Q[s,a] | a4 a; asz
up left right
s; | 0.60 | 0.74 / 0.94
s; | 036|032/ 078
S3 - / -

s(OQ =s,,a(0) = a3,r(1) = 0.2, s&l)

Y
Qlsy,asz] = 0.2 + 0.8 * max(Q[s,, a;]
ai
=0.2+0.8x%0.78
= 0.82
Q[Sr a] a1 aZ a3
up | left right/
S1 0.60 | 0.74 0.82’
sz | 036|032 078
S3 - - -

Q(s,a) =7 +ymaxQ(s’,a’)

(53)
AT
0.1 ‘@-@ 0.1

-0.2

=/s, ,a(1) = a3, r(2) = —0.1j(2) =5, ,a(2) =ay,r(3) =0.1,5(3) =53

- /
Y Y
Qlsz, as] =—-0.1+08+« IT'(II?X(Q[SZ:ai]) Qls,,a;] = 0.1
=-0.1+08%0.78
=0.52
Qls,al| a; | a, as; Qls,al| a1 | a as;
up left | right up left | right
Sq 0.60 | 0.74 | 0.82 S1 0.60 | 0.74 | 0.82
s; | 036 032 | 052 s; | 91 |032] 052
/
- S PG
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Q-Learning

Qls,a]l | a1 | ay as;
After up | left | right

s1 | 02056 040
s, | 0.10 ofs 0.10

11th episode

125t episode: 53 - / -
S(O)C s;,a(0) = a,,r(1) = 7/0.1, s&l) =KSI ,a(l) = aq,7r(2) = —0.2,52) = S3
N N
Q[sy,a;] = —=0.1+0.8 % TTL?X(Q[Spai]) Qlsy,a;] = —0.2
=—-0/1+0.8=+0.56
= 0.
Qls,al| a; | a, a; Qls,a]l| a4 a, a;
up left/ | right up left | right
s1 -O{ 0.35 | 0.40 s1 |20 035 | 0.40

s, | 010 | 025 T 61— | s, | 0.0 | 0.25 | 0.10

S3 - - - s3 - - -

Q(s,) =7 +ymaxQ(s’,a’)



Q-Learning

After
15t episode
Q[S; a] aq a, a3
up left | right
sy |-0.20| 0.18 | 0.30
sz | 0.10 | 0.08 | -0.00
S3 - _ )
After
100t episode
up left right
s1 |-020| 012 | 0.28
sz | 010 | 0.02 | -0.02
S3 - _ _

After
50th episode
up left | right
s; |-020| 012 0.28
S2 0.10 | 0.02 | -0.02
S3 - _ _
After
1000t episode
Q[S; a] aq a, a3
up left right
s1 |-020|0.12 | 0.28
S2 0.10 | 0.02 | -0.02
S3 - _ _

Move up/left/right

OF

-
|
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Q-Learning

ki« I (3 * 256)"x*"'y < number of states

Too huge states space to approximate Q-function iteratively by
Q-table!!!
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Conclusion — Machine Learning

1. Supervised Learning
® Linear Regression
® [ ogistic Regression
® Classification
» Distance-based algorithms
» Linear classifiers
* Other classifiers

2. Unsupervised Learning
® Clustering
* K-means method
» Spectral clustering
® Representation learning

3. Reinforcement Learning
® Q-Learning, Q-table
® Exploration & Exploitation
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