{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "datebase" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2024-12-06 02:29:55.975880: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", "2024-12-06 02:29:55.987842: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n", "2024-12-06 02:29:56.103266: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n", "2024-12-06 02:29:56.210334: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", "E0000 00:00:1733423396.294028 13437 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", "E0000 00:00:1733423396.318467 13437 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", "2024-12-06 02:29:56.510180: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", "To enable the following instructions: AVX2 AVX_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" ] } ], "source": [ "import numpy as np\n", "import seaborn as sns\n", "import scipy.io\n", "import matplotlib.pyplot as plt\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.metrics import confusion_matrix\n", "from tensorflow.keras import Sequential\n", "from tensorflow.keras.utils import to_categorical\n", "from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout,BatchNormalization\n", "from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout,BatchNormalization\n", "from tensorflow.keras.callbacks import TensorBoard\n", "\n", "log_dir = \"board/model\"\n", "tensorboard_callback = TensorBoard(log_dir=log_dir, histogram_freq=0) # 设置TensorBoard回调\n", "train_data = scipy.io.loadmat('data/train/train_32x32.mat')\n", "test_data=scipy.io.loadmat('data/test/test_32x32.mat')\n", "train_images = train_data['X'].transpose(3, 0, 1, 2).astype('float32') / 255.0 # 归一化图像数据\n", "train_labels = train_data['y'].flatten() - 1 # 假设标签是从1开始的,转换为从0开始\n", "test_images = test_data['X'].transpose(3, 0, 1, 2).astype('float32') / 255.0\n", "test_labels = test_data['y'].flatten() - 1\n", "\n", "# 将标签转换为分类格式\n", "num_classes = 10 # SVHN 数据集有10个类(0-9的数字)\n", "train_labels = to_categorical(train_labels, num_classes=num_classes)\n", "test_labels = to_categorical(test_labels, num_classes=num_classes)\n", " \n", "# 划分训练集和验证集(如果需要的话,可以从训练集中划分出一部分作为验证集)\n", "X_train, X_val, y_train, y_val = train_test_split(train_images, train_labels, test_size=0.2, random_state=42)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "model" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/robot/miniconda3/envs/env-test/lib/python3.11/site-packages/keras/src/layers/convolutional/base_conv.py:107: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n", "W0000 00:00:1733423401.042268 13437 gpu_device.cc:2344] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.\n", "Skipping registering GPU devices...\n" ] }, { "data": { "text/html": [ "
Model: \"sequential\"\n",
"
\n"
],
"text/plain": [
"\u001b[1mModel: \"sequential\"\u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃ Layer (type) ┃ Output Shape ┃ Param # ┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "│ conv2d (Conv2D) │ (None, 32, 32, 32) │ 896 │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ batch_normalization │ (None, 32, 32, 32) │ 128 │\n", "│ (BatchNormalization) │ │ │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_1 (Conv2D) │ (None, 32, 32, 32) │ 9,248 │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ max_pooling2d (MaxPooling2D) │ (None, 16, 16, 32) │ 0 │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout (Dropout) │ (None, 16, 16, 32) │ 0 │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_2 (Conv2D) │ (None, 16, 16, 64) │ 18,496 │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ batch_normalization_1 │ (None, 16, 16, 64) │ 256 │\n", "│ (BatchNormalization) │ │ │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_3 (Conv2D) │ (None, 16, 16, 64) │ 36,928 │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ max_pooling2d_1 (MaxPooling2D) │ (None, 8, 8, 64) │ 0 │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout_1 (Dropout) │ (None, 8, 8, 64) │ 0 │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_4 (Conv2D) │ (None, 8, 8, 128) │ 73,856 │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ batch_normalization_2 │ (None, 8, 8, 128) │ 512 │\n", "│ (BatchNormalization) │ │ │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_5 (Conv2D) │ (None, 8, 8, 128) │ 147,584 │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ max_pooling2d_2 (MaxPooling2D) │ (None, 4, 4, 128) │ 0 │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout_2 (Dropout) │ (None, 4, 4, 128) │ 0 │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ flatten (Flatten) │ (None, 2048) │ 0 │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense (Dense) │ (None, 128) │ 262,272 │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout_3 (Dropout) │ (None, 128) │ 0 │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense_1 (Dense) │ (None, 10) │ 1,290 │\n", "└─────────────────────────────────┴────────────────────────┴───────────────┘\n", "\n" ], "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "│ conv2d (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m896\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ batch_normalization │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m128\u001b[0m │\n", "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m9,248\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ max_pooling2d (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_2 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m18,496\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ batch_normalization_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │\n", "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_3 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m16\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m36,928\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ max_pooling2d_1 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout_1 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_4 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m73,856\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ batch_normalization_2 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │\n", "│ (\u001b[38;5;33mBatchNormalization\u001b[0m) │ │ │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ conv2d_5 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m8\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m147,584\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ max_pooling2d_2 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout_2 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m4\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ flatten (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2048\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m262,272\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout_3 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,290\u001b[0m │\n", "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Total params: 551,466 (2.10 MB)\n", "\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m551,466\u001b[0m (2.10 MB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Trainable params: 551,018 (2.10 MB)\n", "\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m551,018\u001b[0m (2.10 MB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Non-trainable params: 448 (1.75 KB)\n", "\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m448\u001b[0m (1.75 KB)\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "CNN = Sequential([\n", " Conv2D(32, (3, 3), activation='relu', padding='same',input_shape=(32, 32, 3)),\n", " BatchNormalization(),\n", " Conv2D(32, (3, 3), activation='relu',padding='same'),\n", " MaxPooling2D((2, 2)),\n", " Dropout(0.25),\n", " Conv2D(64, (3, 3), activation='relu', padding='same'),\n", " BatchNormalization(), # batch_normalization_2\n", " Conv2D(64, (3, 3), activation='relu', padding='same'), # conv2d_4\n", " MaxPooling2D((2, 2)), # max_pooling2d_2\n", " Dropout(0.25), # dropout_2\n", " Conv2D(128, (3, 3), activation='relu', padding='same'), # conv2d_5\n", " BatchNormalization(), # batch_normalization_3\n", " Conv2D(128, (3, 3), activation='relu', padding='same'), # conv2d_6\n", " MaxPooling2D((2, 2)), # max_pooling2d_3\n", " Dropout(0.25), # dropout_3\n", " Flatten(), # flatten_1\n", " Dense(128, activation='relu'), # dense_1\n", " Dropout(0.5), # dropout_4\n", " Dense(10, activation='softmax') # dense_2\n", "])\n", "CNN.summary()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "train" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/8\n", "\u001b[1m916/916\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 43ms/step - accuracy: 0.1829 - loss: 2.2818 - val_accuracy: 0.3392 - val_loss: 1.8202\n", "Epoch 2/8\n", "\u001b[1m916/916\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 41ms/step - accuracy: 0.3494 - loss: 1.7242 - val_accuracy: 0.8403 - val_loss: 0.5841\n", "Epoch 3/8\n", "\u001b[1m916/916\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 44ms/step - accuracy: 0.7911 - loss: 0.6765 - val_accuracy: 0.8899 - val_loss: 0.3787\n", "Epoch 4/8\n", "\u001b[1m916/916\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 44ms/step - accuracy: 0.8813 - loss: 0.4180 - val_accuracy: 0.8890 - val_loss: 0.3766\n", "Epoch 5/8\n", "\u001b[1m916/916\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 44ms/step - accuracy: 0.8972 - loss: 0.3623 - val_accuracy: 0.9175 - val_loss: 0.3073\n", "Epoch 6/8\n", "\u001b[1m916/916\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 44ms/step - accuracy: 0.9105 - loss: 0.3191 - val_accuracy: 0.9195 - val_loss: 0.2880\n", "Epoch 7/8\n", "\u001b[1m916/916\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 45ms/step - accuracy: 0.9199 - loss: 0.2909 - val_accuracy: 0.9286 - val_loss: 0.2713\n", "Epoch 8/8\n", "\u001b[1m916/916\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 45ms/step - accuracy: 0.9223 - loss: 0.2725 - val_accuracy: 0.9339 - val_loss: 0.2487\n", "\u001b[1m814/814\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 7ms/step - accuracy: 0.9352 - loss: 0.2530\n", "loss: 0.2482585459947586\n", "Accuracy: 0.9357329607009888\n" ] } ], "source": [ "CNN.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n", "history = CNN.fit(X_train,y_train,batch_size=64,epochs=8,shuffle=True,validation_data=(X_val,y_val),callbacks=[tensorboard_callback])\n", "loss,accuracy = CNN.evaluate(test_images,test_labels)\n", "print(\"loss:\",loss)\n", "print(\"Accuracy:\",accuracy)\n", "CNN.save('model/CNN_model.keras')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "print" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+oAAAIlCAYAAABCVwIHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADbEklEQVR4nOzdd3xUVfo/8M+dlt57CJAESCBAaJpAROmgEen2dUVFVsGCrnVVINi+uKuwtlVsqPxQlF6iIBJQDAQEIUAUQgmEVNJ7MuX+/ggzMGRCMmRm7szk8369eMHce+be5xDlzjPnnOcIoiiKICIiIiIiIiK7IJM6ACIiIiIiIiK6hIk6ERERERERkR1hok5ERERERERkR5ioExEREREREdkRJupEREREREREdoSJOhEREREREZEdYaJOREREREREZEeYqBMRERERERHZESbqRERERERERHaEiTqRnVu+fDkEQcDy5cs7dJ2FCxdCEATs3LnTInERERGRY+BnCSLHw0Sd6AqCIEAQBMjlcpw9e7bVdnFxcYa227dvt2GEtldXVwdfX18IgoB77rlH6nCIiIjsGj9LNNMn9gsXLpQ6FCKHw0SdyASFQgGdTocvvvjC5PnffvsNf/75JxQKhY0jk8aqVatQWVkJQRCwdu1alJaWSh0SERGRXeNnCSLqCCbqRCaEhIRg8ODB+OKLL6DT6Vqc//TTT6FUKjFu3DgJorO9ZcuWQS6X47nnnkNjYyO++uorqUMiIiKya/wsQUQdwUSdqBWzZs3CuXPn8NNPPxkdr6qqwvfff49JkyYhODi41ff//vvvmDZtGoKDg+Hi4oLu3bvj0UcfRX5+vsn2J0+exO233w4/Pz94eHggKSkJmzdvvmqM58+fx2OPPYbo6Gi4uLggICAAkyZNwv79+83vcCuOHj2KvXv3Yvz48XjmmWegVCrxySefXPU9q1atwpgxY+Dv7w9XV1dERkbi7rvvxu+//35Nba+2Ji4nJweCIGDmzJlGx2fOnAlBEHD69GksXboU/fv3h5ubG0aOHAkAaGpqwvvvv4/k5GR0794dLi4u8PPzw5gxY7Bly5ZW+3b+/Hk88cQT6NWrF1xdXeHv74+EhAS8+uqrAACtVouuXbvC29sbNTU1Jq/x2GOPQRAErFmz5qp/j0RE5Nj4WcI85vS3sLAQTz/9NGJjY+Hh4QFvb2/07NkTf//733Hq1ClDO1EU8fnnn2PYsGEICgqCq6srwsPDMXbsWHz77be27B6RWZioE7Xinnvugbu7Oz799FOj4ytXrkRtbS1mzZrV6ns3bNiApKQkbNmyBePGjcPTTz+NmJgYfPTRR7juuutw+vRpo/bZ2dkYOnQoVq9ejWHDhuHJJ59EREQEpkyZgrVr15q8x8GDBzFw4EB8+OGHiI2NxeOPP47bbrsNv/zyC4YPH47U1NSO/yWgeTQdaE58AwMDMXHiRPz555/YvXt3i7aiKGLmzJm46667kJmZiWnTpuGpp57C8OHD8csvvxh9WDCnbUc88cQTWLhwIeLj4/HEE08gKSkJAFBWVoYnn3wS1dXVhp/R5MmTcfDgQUycONHQ78v9/vvvGDBgAN577z106dIFTz75JO655x54enoa1t/J5XI8/PDDqK6uxjfffNPiGnV1dVixYgVCQ0MxadIki/SRiIjsEz9LtJ85/a2rq0NSUhKWLFliSOYffvhhDBw4EJs2bcKff/5paPvCCy/goYceQlFREe644w48/fTTmDBhAgoLC7F69Wqb9Y/IbCIRGQEgdunSRRRFUfz73/8uqlQq8cKFC4bzQ4YMEbt16yZqtVrx/vvvFwGIP/30k+F8dXW16O/vL8rlcvG3334zuvYbb7whAhDHjh1rdHzcuHEiAHHp0qVGx9evXy8CEAGIX3zxheG4Wq0We/ToIbq6uoq//vqr0Xvy8vLE8PBwMSQkRKyvrzccX7BggQhATEtLa/ffRX19vejn5yf6+vqKDQ0NoiiK4oYNG0QA4t///vcW7T/++GMRgJiQkCBWVFQYndNoNGJ+fv41tb1a7GfOnBEBiPfff7/Rcf3PJjw8XDx9+nSL9zU0NIi5ubktjpeVlYl9+vQR/fz8xLq6OsPxxsZGMTIyUgQgrly5ssX7zp07Z/hzfn6+qFQqxSFDhrRo99lnn4kAxH/9618tzhERkXPgZwnj9gsWLLhqO3P7q/8s8uSTT7a4VmNjo1hVVWV47efnJ4aHh4s1NTUt2l7+MyGyNxxRJ7qKWbNmoampybAm+9ChQzhw4AAeeOAByGSm//dZv349ysrKcNdddxlGb/WeeeYZdO/eHdu3bzdUgT1//jx++uknREVF4bHHHjNqP3nyZIwYMaLFPbZs2YJTp07h8ccfx/Dhw43OhYeH47nnnkNRURF+/vnna+47AHz33XcoLy/HXXfdBRcXFwBAcnIyQkJC8P3336OiosKo/XvvvQcA+Oijj+Dj42N0Ti6XIyws7JradsSzzz6LqKioFsddXFwQERHR4rifnx8eeughlJeXG03727RpE3JycjBp0iTcfffdLd7XtWtXw5/DwsIwZcoUHDhwAAcPHjRq9/HHH0Mmk+Hhhx/uSLeIiMhBdPbPEu1hbn8FQQAAuLu7t7iWSqWCl5eX4bUgCFCpVCaL9gUGBlqyG0QWxUSd6CpuvPFGxMbG4rPPPgMAfPLJJ5DJZHjwwQdbfc8ff/wBABg1alSLc0ql0vCw1LfT/z58+HDI5fIW79Gvqb7cnj17ADSvz164cGGLX/v27QMA/PXXX+3tqkn6teiXr/9WKBS49957UV9fjxUrVhiO19bW4ujRowgJCcGgQYOuel1z2nZUYmJiq+eOHTuGmTNnIjo6Gm5uboYtcp555hkAQF5enqHt3r17AQC33HJLu+47Z84cAM2Jud6hQ4ewb98+TJgwAZGRkeZ2hYiIHFBn/yzRHub2d8SIEejSpQv+7//+D7fccgvee+89HDhwAFqttsX77733XuTk5KBv377417/+hR9//BGVlZVW7A2RZXA/CKI2PPTQQ3juueewY8cOrFy5EuPGjUO3bt1aba//xz80NNTkef1Isb6d/veQkBCT7U1dR7892vfff3/V2FsrZtYe+nXovXv3bpHsPvDAA3jnnXfwySefGL6514+ud+nSpc1rm9O2o1r7OezduxejR4+GRqPBmDFjMGnSJHh7e0Mmk+HQoUPYsGEDGhsbrznmkSNHok+fPli5ciXefvtteHp6GpL2Rx55pGOdIiIih9JZP0u0l7n99fb2xt69e7FgwQJs3LgRP/74IwAgKCgIc+fOxUsvvWQYQV+yZAl69OiBzz//HG+++SbefPNNKBQK3HrrrXjnnXcQHR1t7e4RXROOqBO14f7774dSqcT999+PiooKPPTQQ1dtr5/GXVhYaPJ8QUGBUTv970VFRSbbm7qO/j0bNmyAKIqt/lqwYEE7emiavpjaX3/9ZRhp1v/q378/ACAzMxMZGRkAAF9fXwDGo9CtMactAMPUQI1G0+LcldPvr6SfHnel1157DfX19di2bRt++OEHLF26FIsWLcLChQtNjsKbGzMAPProo6ipqTEUDfp//+//oUuXLrj11lvbfQ0iInJ8nfWzRHuZ218AiIiIwGeffYbi4mIcPXoU7777Lvz9/bFw4ULDTixA83K6J598EocPH0ZRURHWrFmDqVOnYsOGDbj55pvR1NRkxZ4RXTsm6kRtCA4OxsSJE3H+/HkEBgZi8uTJV22vn8ptaisxjUZjqJY+ePBgo/a7d+82OWXL1HWGDh0KAPj111/b3Q9zNDY24uuvvzZMzXvooYda/Bo/fjyAS9PjPTw80K9fPxQVFeHQoUNXvb45bYHmdeMAkJub2+KcqS3f2uPkyZPw9/c3OR1w165dLY7p/863bt3a7nvcf//98PDwwMcff4yVK1eiuroas2bNMjktkYiInFdn/CxhDnP7ezlBENC3b188/vjjhm3w1q1bZ/I+wcHBmDZtGr777juMHj0a2dnZOHr0qIV6QWRZTNSJ2uHtt9/GunXrsGXLFqhUqqu2nTJlCvz9/fHNN98Y1jXrLV26FKdPn8bYsWMNU94iIiIwbtw4nDlzBu+//75R+w0bNphMGidPnowePXrggw8+aHXrlD179qCurs6cbhqsWbMGpaWlmDBhAj777DN8+umnLX6tWrUKbm5u+Pbbb1FdXQ2geSs0oHkkuaqqyuiaWq3W8I24uW31I9xffPGF0ah6bm4uFi1adE19jIyMRFlZGTIzM42Of/bZZyaT8dtuuw2RkZFYv349vvvuuxbnTY20e3t7495778XBgwexYMECyOXyq27FQ0REzquzfZYwh7n9PXr0KHJyclpcRz+jwNXVFUDzwMPPP/8MURSN2qnVapSVlRm1JbI3XKNO1A5RUVEmK4eb4unpic8//xy33347RowYgdtvvx3dunXDgQMHsG3bNoSGhhoVGAOADz74AMOGDcO8efOwbds2DBgwACdPnsS6detw2223YdOmTUbtlUol1q5diwkTJuDWW29FUlISBg4cCHd3d+Tm5mL//v04ffo0CgoKTFZEbYt+2vvVkkpfX19Mnz4dK1aswMqVK/GPf/wDs2bNwu7du/HVV1+hZ8+emDx5MoKCgpCXl4e0tDQ8+OCDhv3GzWmbkJCAkSNHYufOnUhISMDo0aNRVFSETZs2YcKECSZH2tsyb948bN26FcOHD8cdd9wBHx8f/P7779i9ezdmzJjRYm9VlUqF77//HuPHj8edd96Jjz76CAkJCaivr8eff/6JHTt2mJyaP2fOHCxbtgwFBQWYNGmSyUrzRETk/DrbZ4nLrV+/3mRiDQDjx4/HPffcY1Z/t2/fjqeffhpJSUno3bs3goODcf78eWzYsAGCIODZZ58FANTX12Ps2LGIjIxEYmIiunfvjoaGBvz000/4888/MXHiRMTFxXWob0RWI8GWcER2DZftfdoWU3uf6u3bt0+cMmWKGBgYKCqVSrFr167iI488Iubl5Zm8VnZ2tjh9+nTRx8dHdHd3F4cOHSpu3rxZ/OKLL1rsfapXVFQkPv/882Lfvn1FNzc30cPDQ+zZs6c4ffp08euvvxbVarWhbXv3Pj1x4oQIQAwODhabmpqu2nbXrl0iAHHw4MFGx1esWCHedNNNore3t+ji4iJGRkaK99xzj3jgwIEW12hv24qKCnH27NliUFCQqFKpxL59+4off/xxm/uonzlzptX4N23aJCYmJoqenp6ij4+POG7cOHHXrl1X/Ts/e/as+Oijj4qRkZGiUqkU/f39xYSEBPG1115r9T6DBg0SAYipqamttiEiIufR2T9LXNn+ar8u3wu9vf3NysoSn3rqKXHIkCFiYGCgqFKpxO7du4vTp0832oe9qalJXLx4sXjzzTeLXbt2FV1cXMTAwEAxMTFR/N///ic2Nja2qx9EUhBE8Yq5IEREZDFVVVXo0qULAgICcPr06Vb3zCUiIiIi0uMnRiIiK/rwww9RU1ODOXPmMEknIiIionbhiDoRkYVVVlbivffeQ15eHj7//HMEBQXhr7/+gqenp9ShEREREZEDYKJORGRhOTk5iIqKgqurK6677jq89957GDhwoNRhEREREZGDYKJOREREREREZEe4YJKIiIiIiIjIjjBRJyIiIiIiIrIjTNSJiIiIiIiI7AgTdSIiIiIiIiI7opA6ACmVl5dDo9FY5FpBQUG4cOGCRa5lb5y1b87aL4B9c1Tsm2OyVN8UCgX8/PwsEBFdyVLPe/537JjYN8fjrP0C2DdHJcWzvlMn6hqNBmq1usPXEQTBcD1nK6LvrH1z1n4B7JujYt8ckzP3zZlY4nnvzD9r9s0xOWvfnLVfAPvmqKTqG6e+ExEREREREdkRJupEREREREREdoSJOhEREREREZEdYaJOREREREREZEc6dTG5q2lsbERjY2O729fX16OpqcmKEUmnI31zcXGBi4uLhSMiIiLqOFEUUVNT0+7iQHzWm8ZnPRGR5TFRN6G2thaCIMDLy8tQ5a8tSqXSIhXk7dG19k0URdTX16O2thYeHh5WiIyIiOja1dTUwMXFBSqVql3t+axvic96IiLr4NR3EzQaDdzd3dudpJNpgiDA3d3dYnvVExERWZIoiu1O0sk0PuuJiKyDiboJTNAti3+fREREzo3PeiIiy2KiTkRERERERGRHmKgTERERERER2REm6lak1WmRnp+O9SfXIz0/HVqdVuqQzDZjxgy8/PLLUodBRERkl/isJyIia2DVdytJPZOK+Xvmo6C2wHAszCMMi4YtQnJUssXv16VLl6uev/3227F06VKzr/vJJ5/A3d39GqMiIiJyXnzWExGRtTBRt4LUM6mYvX02RBjvy1pYW4jZ22dj2dhlFn+A//HHH4Y/b9y4Ef/5z3/wyy+/GI65uroatVer1VAqlW1e18/Pz6m3oyEiIroWfNYTEZE1cep7O4iiiDp13VV/1aprUaeuQ3VjNV5Jf6XFgxuA4dj89Pmobqxu85p16jqIYsvrmBIcHGz4pd//Xf+6sbERffr0wcaNGzFjxgxER0dj7dq1KCsrw5w5czBkyBD06NEDY8aMwfr1642ue+V0uMTERLz77rt4+umnERMTg+uvvx4rVqy49r9cIiJHpdVClZ4OfPNN8+9ax5vyTJdc7Vlf21SL4tpinK86j+LaYlQ1VPFZT0REVsUR9Xao19Sj1/JeFrmWCBEFdQXo/VXvdrXPnpkNd6VlpqO98cYbmD9/Pt555x2oVCo0NjYiPj4ec+bMgZeXF37++Wc88cQT6NatGwYPHtzqdT7++GM8++yzePzxx7Flyxa8+OKLGDp0KHr27GmROImI7J1raip85s+HvKB5ynMAAG1YGCoXLUJDsuWnPJP18VlvjM96IiJpcUS9E5k1axaSk5PRrVs3hIaGIiwsDI888gj69euH7t2748EHH8SIESOwefPmq15n9OjRmDlzJqKiojB37lz4+/sjPT3dRr0gIpKWa2oq/GbPhqygwOi4rLAQfrNnwzU1VaLIiPisJyJyFhxRbwc3hRuyZ2ZftY1CqYBGrUFGQQb+tvVvbV5zxYQVSAxLbNe9LWXAgAFGr7VaLd5//31s2rQJBQUFaGpqQlNTU5sFZeLi4gx/FgQBQUFBKC0ttVicROREtFqo9u0DmpqaR/cSEgC5XOqoro1aDaGiAj4vvQSIIoQrTguiCFEQ4L1gARomTHDcfnZSVz7rRVHEX+V/QaPTtGh7tOQo5u+d3+Y1+awnIqJrxUS9HQRBaHNKmlKphBpq3BRxE8I8wlBYW2hy7ZoAAWEeYbgp4ibIZbb9EOfmZvxB4OOPP8Ynn3yClJQU9O7dG+7u7liwYEGbxWQUCuP/bARBgE6ns3i8ROTY7GZ6uEYDoboaspqa5t+rqy+9rqoyHDecq6mBrKqq+Xf96+pqCA0Nbd5KEEUo8vOhyshAU1KSDTpHlnLls76mqQYKmQIKWcuPSoNCBiHQNRAlDSWmr8VnPRERdRATdQuTy+RYNGwRZm+fDQGCUbIuXBx/SRmWYvMHtykZGRmYMGECpk+fDgDQ6XQ4c+YMevWyzBo9Iuq89NPDcUWRLP308PJly9pO1rXa5iS5vQm1ieNCdTVk9fVW7Klp8uJim9+TLEutaz2RlQty/CP+H3h93+t81hMRkVUwUbeC5KhkLBu7zOTeqinDUqyyt+q1iIyMRGpqKvbv3w9fX18sW7YMFy5c4MObiDpGq4XP/PmtTw8H4PvUU6jbswey2trm5PvyZFufmNfVWTQsnasrRC8viF5e0Hl5QfT0hM7bu/n3K44b/uzlBZ2nJ0Rvb+g8PaE8cgSBd93V9l9BcLBFYyfbU8quvq3ZDeE34KWEl/DZ0c9QWFdoOM5nPRERWQITdStJjkrGhO4TkFGYgeK6YgS7ByMxNNEuvl3XmzdvHnJzc3HvvffCzc0N9957LyZMmIDq6mqpQyMiOybU10NWVAR5cfGl34uLIS8qgqy4GIozZwzT3U2+H4BQUwPPzz9v1/1EF5fmZNlEgt1aQt3iuJcX0I79pNvSlJQEbVgYZAUFLb6EAAARgDY8HE2Jba9LJvvmofSAUqa86sj6yIiRmN1vNvYV7eOznoiILEoQ27t5pxO6cOGCyTVaVVVV8Pb2NutaSqWyzfVejqqjfbuWv09rEwQBYWFhKCgoaPf+tY6CfXNAWi1c9u1DQFMTSqUquCaKECorW02+Da+LiyGz0Af8+vHjoR48uMVotlES7ukJuLhY5H6WkrX8NYx+6X8AjLdO0a/e3fH6o4ib+XKL97VFqVQiKCio4wFSC9f6vK9srEROVU6r5yO9I+Hj4mOJECXnjM96wImfG3DevjlrvwD2zVFZsm/mPOs5ok5EjsGZqodfxuoF17RayEpLDUm3USJ+4YJRIi40Nrb7sjpXV+hCQqANDoYuOBjakJDm34ODISsthc/rr7d5jdqHH3a4gmtanRZ/V63H0DuA//4IdK26dO68N/DUzcBe1Qbs1b1oV6OqdG18XHwQ6R2JvJo8o5F1mSBDN69uTpOkExGR/WGiTkR2z26qh1tYhwquNTZCfuGC6Snol/9+4QIEMyo163x8TCbfRkl5cHDzVHLB1ORvAFotPD//3C6nh4uiiFp1LarV1ahpqkFVUxVq1Bd/b6pBtboa1U2X/VJf+r2mqQYl9SUobyzHujhgQ2/gxrNAWA1Q4An82h3QyQDU5iOjMANJ4Y71JQSZ5uPiA2+VN2rVtWgSm5BblQudqIO74uq7wRAREXUEE3UismsWqR5uj9pRcM3nuecgP3cO8pIS4wS8qAiyiop230oUBOgCAw3Jd4tEPCioOREPCgLcLLCfs1yOtMemYPRL/4MI09PDd86djDgzZkSIoogGbYPJ5LpKfTHJvjyxbqpGjbqmRcJdo66BTrTMFlM6GbAryvS54jpWfXcmgiDAU+UJpVKJsvoy1KprUd5YjmB3Fg0kIiLrYKJORParrWRWEOC9YAEaJkxofRq8Vgs0NUHQaAC1GoJa3fznK44Z/a7RmDzW4j0aDYRWjuGKaxjOXTwmq6hos+CavLwcPq++2mobUaVqTrJNjX7rk+/gYOgCAwGF7f65b2t6+LybgV2yVZh/Iha1mtrmBPqyBLzFaPbFBPtqRb3MJRfk8FJ5wUvpBU+VJ7xV3vBUXvxd5QkvpVfzef2vi+3OVJ7B87ufb/P6TOCcl5+LH2rVtahorODPmYiIrIaJOhHZLVVGxtWTWVGEIj8fIddfD8hkxsmxPrF28IImTYMHo2nw4BbJtzY4GKKfX+vTz61IJ+pQ0ViB0vpSlDSUGP9eX4IT5SdQUFtw9enhjWWYt2ue2fcWIMBT6Wkyuda/vjy59lJ5tUi8vVXecJW7QriGv7uhoUOx9I+lKKwtNNo7+/L4wjzCkBjKqu/OysfFB3k1eajX1KNeUw83hQVmoRAREV2BiToR2SVZWRlcN25sV1t5UVG7rysKAqBSQVQoAKUSolIJKBQQWzkGhaL59cXjVzsHpdLoGkbnrmiryM6Gz2uvtRlv1YsvWr3gmiiKqFZXo6S+BKUNpYaE2/DnhhKU1JegrKHM8LtW1Lbr2lebHh7rF4sevj2MkmhD4t3K6LaH0gMyQWb6gjYgl8mxaNgizN4+GwIEo2RduDjvI2VYCgvJOTGFTAFvlTcqmypR3lAON08m6kREZHlM1InIPogiFKdOwXXbNrhs2wbVgQPtLoJW8dprUA8ebJwsX0y8rzxmL5XiG0eNgudnn1mt4Fq9ph4l9SWGX/okWz/yXdpgnIw36ZrMvoeviy/8Xf0R6BqIQLfA5j+7BaKqqQqfH2t7j/TXkl5zyIJryVHJWDZ2GebvmY+C2kszPsI8wpAyLAXJUQ5YM4HM4ufqh8qmSlQ0ViDMI+yaZmcQERFdDRN1IpKORgPVvn1w/eknuG7bBkVOjtFpdVwc5OfOQaipMZ3MCgK0YWGo+/vf7SYBbzczC641ahtRWl/aasJ9ZTJer6k3OyQPpQcCXQMR4BaAANcABLoZ/znQNRD+bs2Jub+rP1RylcnraHVa/JDzg1NPD0+OSsaE7hOwr2gfmlRNUDWpkBCSwJH0TsJL5QW5IIdap0aNugZeKi+pQyIiIifDRJ2IbEqoqoJLWlpzcp6WZlS9XFSp0JiUhIZx49A4bhy0XboYqr6LgNF6c/HiCFZVSorjJekANFoN/qZci6SrFFzbrP0U4d+moryxHFVNVa1frBUucpdLSbZbIAJcAxDgFtAiGdePhltqrW1nmR4ul8mRFJ6EsLAwFBQUQHTwegjUfjJBBl8XX5Q2lKK8sZyJOhERWRwTdWvSapuLYRUXQxsc3DyF1Y4TisTERMyaNQsPP/yw1KGQk5GfPducmP/0E1R79zYXertI6+eHxrFjm5PzESMgenoavbchORnly5YZ7aMONO+jXpWSYldbs4miiPLGcpTUl+BC/QVcqLuAC/UXLr2+/FfdBWhF7dULrunUOFt91nB9haAwJNiXJ9z6JPzKZNxD6SHZlFxODydn5+fqh9KGUlTWlUGZmQvFhQt81hMRkcUwUbcS19RUk4lF5aJFdpVYEFmFTgflH3/Adds2uP70E5THjxudVvfsiYbx49E4fjyaBg9u80NtQ3IyaseNxekfv4SyogRq30BE33w/5ErTU68tSV/hvLWk+/KkvKS+BBpR0/ZFr7zHVQquPTXoKUzpOQWBboHwUfk41FpYTg8nZ+aucEeXHRnotfgDuBWVGI7zWU9ERJbARN0K9FN1ccU0SFlhIfxmz0b5smV8gJPTEerq4PLLL3D56Se4bt8OecmlD66iXI6mhAQ0jBuHhnHjoI2ONuvaqWdSjUdmC4Gw7z/GomGLrmlkVp98F9cVGyXbJfUlKK4rNnp9Lcm3r4svAt0CEeQWZPilfx3oFohg92CcrTqLR3c82ua1ksKT0NO3p9l9tBecHk7Oyu2HH9D/nym4sgwDn/VERGQJdpGob926FRs3bkRFRQUiIiIwc+ZM9OnTp9X2P/74I7Zu3Yri4mIEBgZi2rRpGDFihPUCFEUI9W0UZlIomqfzarXweeWV5vdc0UQQRYiCAJ/589F4443tmhonurm1a5/kr7/+GkuXLsX+/fshk10qSzVz5kz4+PjgqaeeQkpKCg4ePIi6ujr06tULL7zwAm666aY2r03UGllBAVy3b2+u1P7bbxAaGw3ndF5eaBw1Cg3jx6Nh1CiIvr7XdI/UM6mYvX12i6JkhbWFmL19NpaNXYbkqGToRB3KG8pxof4CiusvJtt1pkfAS+pL2r29mJ6vi69Rwh3k3jIJ1/+5tSJrl+sX0A9hHmFOXXCNyKFc07MefNYTEZFVSJ6op6enY/ny5Zg1axZiY2Oxfft2vPHGG1iyZAkCAwNbtN+2bRu++eYb/OMf/0CPHj1w8uRJfPzxx/Dw8MB1111nlRiF+nqE9eplmWuJIuQFBQjr3btd7QuysyG6u7fZbuLEiZg/fz5+++033HjjjQCAiooK7Nq1C8uXL0dtbS1Gjx6N5557Di4uLvj+++/xwAMP4JdffkGXLl061CfqREQRimPHDFPaVZmZRqc13boZRs2bEhObt0PrAK1Oi/l75ptMZPXHHv35Ufi5+KGssf17e+v5uvgi2C24OdF2v5RwG45dTLzbm3ybo7MUXCNyFHzWExGRPZE8Ud+8eTNGjx6NMWPGAGj+Vvjw4cPYtm0b7rnnnhbtf/nlF4wdOxZJSc1774aEhCA7OxsbNmywWqLuCPz8/DBy5EisX7/e8PDevHkzfH19MXz4cMjlcvTt29fQ/vnnn8ePP/6Ibdu24YEHHpAqbHIEDQ1wSU83FIO7vO6CKAhQDx7cnJyPHw9NTEy7RoWuRifqcLbqLI6WHsWPOT8aFSIzRSNqcKHhguG1n4uf0RTzK0e79ccCXAMsnnybiwXXiMgcfNYTEXUekibqGo0Gp0+fxpQpU4yOx8fH4/gVxaf01Go1lEql0TGVSoWTJ09Co9FAoWjZJbVaDbVabXgtCALc3NwMf26L6OaGguzsq7ZRKBTQaDRQZWQg4G9/a/OapStWNI84tuPe7TV16lQ8//zzeOONN+Di4oJ169Zh0qRJkMvlqKurwzvvvIPt27ejqKgIGo0GDQ0NyMvLa/f1O8LeCmDp47G3uCzBEn2TlZbCZft2uPz0E1x27oSsrs5wTufmhqYRI5qrtI8dC11Q0KV7m3kfjU6DkxUncbTkKI6UHMGR0iM4VnIM1epqs67z/PXP486YOxHgFgClTNn2G+zIrdG34ubIm7GvaB8alY1wUbs4XcE1/v9GjoDPeiIisieSJupVVVXQ6XTw8fExOu7j44OKy/ZWvtyAAQOwY8cOJCQkICoqCqdPn0ZaWhq0Wi2qq6vh5+fX4j3r1q3D6tWrDa+joqKwePFiBF2WYFyuvr6+xZcB7ZnCqwCgGzMG2vBwyAoKjPZ81hMFAbqwMOjGjIHCwtu3JCcn49lnn8XOnTsxaNAgZGRk4NVXX4VSqcTrr7+OtLQ0LFy4EFFRUXB1dcVDDz0ErVZr6KsgCJDL5S37Dpg81l4qlQphYWHX/H6L02qBX38F0tIQGhYGtHMNoaMJDQ1tf2NRBP78E9i0Cdi4Edizx7gYYng4cNttwKRJkI0eDVdXV7iaGU+DpgFHi4/iYMFB/FHwBw4WHkRmUSYaNA0t2qrkKsSHxCPEIwRbsre0ee2b427GoMhBZkZkXyK6REgdgtWZ9d+kg3HmvnUagtD29HOlEqJajcabboI2LAyywsJWn/XasDA03nSTxZ8v48aNw7PPPouff/4ZAwYMQEZGBhYsWAAAePXVV7Fr1y688soriIyMhKurK2bPno2mpiaLxkBERNYn+dR3wPRIRGujEzNmzEBFRQVeeukliKIIHx8fjBgxAhs3bjQqrHK5qVOnYuLEiS2ufeHCBWg0Las5NzU1GY3At4dSqTS8pzIlBX6zZ0MUBKMHuHjxvpUpKVDrdIBOZ9Y92qJQKHDLLbdg9erVOHXqFKKjoxEXFwe1Wo29e/fi9ttvx/jx4wEAtbW1yM3NhVarNcQtiqLRa1N9uxZNTU0oKLj69GVbcU1Nhfcrr7Tcj/vVV52jOq9WC5d9++Df2IgyFxc0JiS0/iFRrYZq3z64XFxvrsjJMT7dr19zIbjx46Hp3//SlPby8jbDqGmqwbGyYzhScgRHS47iaMlRnCg/YbJ6uofSA30D+qJ/YH/0C+iH/oH90cuvF5QyJbQ6LRLyE9osuNZT2dNu/hu7VoIgIDQ0FIWFhU5XGZ19ax+FQtHqF8hkZ+RyVC5adNVnfVVKilW+BHZzc8Mtt9yCdevWIScnB9HR0YiPjwcA7Nu3D7fffjtuueUWAM3P+vPnz1s8BiIisj5JE3Vvb2/IZLIWo+eVlZUtRtn1VCoV5syZg9mzZ6OyshJ+fn7Yvn073Nzc4OXlZfI9SqWy1RFha3xobEhORvmyZSb3Ua9KSbFqQjht2jTMnDkTx48fx7Rp0wzHIyMj8cMPP2DcuHEQBAH//ve/obPwFwVXYw8fzl1TU+HbyrZ5vg8/7PBb6bimphr9N+ePlvv5CpWVcNm5s7kYXFoaZJWVhveLKhUahw9Hw9ixaBg7FrorCw+18jMsayjD0dKjhunrR0uP4kzlGZOJtZ+LH/oF9kP/gP7oF9gP/QL6IconCjKh5ZdsoihCJsjaVXBNJsjs4r8xSxBF0Wn6ciX2jZxJa896TWgIqhdZ98tfe33WExGR5UiaqCsUCkRHRyMzMxMJCQmG45mZmbj++uvbfG9AQAAA4LfffsPgwYNbHVGXQkNyMhomTIAqIwPy4mJog4Ob16lZeYr1DTfcAF9fX5w6dQpTp041HF+4cCGefvppTJ48Gf7+/pg7dy5qamqsGotd0WrhM3/+VbfN816wAA0TJjjkNHjX1FT4tfIlhN/DD6PujjugyMuDKiOjeWuhi7QBAWgcMwYN48ej8aabIHp4tHoPURRRWFeIIyVHcKz0mCEpz6sxvfYx1CPUkJDrfw/3CDd7LS8LrhGRvbr8WV9x9k+U+qiApBvR1TfSqvfls56IyPlJPvV94sSJeO+99xAdHY2YmBhs374dJSUlGDduHABg5cqVKCsrw2OPPQYAyM/Px8mTJ9GrVy/U1tZi8+bNyM3Nxdy5c6XshmlyOZouVqe33S3lOHjwYIvjXbt2xffff290bObMmUavMzIyrBmapFQZGUYjHlcSRBGK/Hz4PfggdOHhgEwGUS5vnu4tlxu/lskAuRyiTNb858tfX97+snNGr/XtL2treG2qvf61qfZyOSCK8PnXv1r9EgIAPL77znBMHRPTPKV97FioBw82+cWEKIo4W33WkIzrR8tLG0pN/v1FekeiX0A/o6Q80K3l9orXKjkqGRO6T8C+on1oUjVB1aRyuoJrRI5q3bp12LdvH/Ly8qBSqRATE4O//e1vCA8Pv+r7srKy8OWXX+L8+fPw8/PDpEmTDMuz9Pbu3YtVq1ahqKgIISEhuPvuu42+2LcLF5/1uuviUVZ5CnJNDbqIOpMzhSx3Sz7riYicneSJelJSEqqrq7FmzRqUl5eja9euePHFFw3r9MrLy1FSUmJor9PpsHnzZuTn5xu2IXnttdcQHBwsVRfIAciLi9vVzm37ditHIp2a++9H7ezZ0EZGGh03VF4vPWoYLT9actRk5XWZIEOMb8ylNeWB/dA3oC+8Vd5Wj18ukyMpPAlhYWEoKCjgNGMiO5GVlYUJEyagR48e0Gq1+Pbbb/Haa6/hnXfegaur6bKTxcXFePPNNzFmzBg8/vjjOH78OD799FN4e3tj6NChAIATJ05g6dKluPPOO5GQkIB9+/ZhyZIlWLRoEXpZaL9zS/JQekApU0KtU6OqqQq+Lr5Sh0RERA5M8kQdACZMmIAJEyaYPHflSHlERATeeustW4RFzqS2tn3N7rgDuoiI5kJ/Wm3zVHKdDoJW23zs4i/Da1EEtFoI1mh/8ZyhvanzWi2E+nrI2jG1UZ2QgNqIUBy/cNiQlB8tPYo/S/9Eg9ZE5XWZCn38+xjWkvcL7Ic+/n3gpmj/NkJE5Pxeeuklo9dz5szBrFmzcPr0acTFxZl8z7Zt2xAYGGgY7Y2IiMCpU6ewadMmQ6K+ZcsWxMfHG6Z2T506FVlZWdiyZQvmzZtntf5cK0EQ4Ofqh+K6YpQ3lDNRJyKiDrGLRJ3IWuSnT8P73/+G28aNAAARpvf61m+lU/mf/zjcGnXFb7sRfMedbbZ78s//wzclT7Zeed2/eZS8b2Bf9A+4VHmdiMgcdXV1AABPT89W22RnZxsqlesNHDgQaWlp0Gg0UCgUOHHiBG699VajNgMGDEBqamqr11Wr1Ua7lAiCALeLe5TbYq97P5fmRL26qRoanQYKWef6mGWLv2Nz6WOyx9g6yln75qz9Atg3RyVV3zrXE4Q6DVl+PryWLoX7t982jz4DaExIgGrfPptvpWNtv3QTkegNdKkCTK2I1AE47w38P/9c6ETzKq8TEZlDFEV8+eWX6N27N7p169Zqu4qKiha7u/j4+ECr1aK6uhp+fn6oqKiAr6+vURtfX98WO8Vcbt26dVi9erXhdVRUFBYvXtzqtnf19fWt7grTmqu1VyqVcK9xR526DtWaagR7ONayPHP/Li6nUqkQFhZmwWgsKzQ0VOoQrMZZ++as/QLYN0dl674xUSenIpSVweuDD+DxxRcQGhsBAA1jxqDq+eeh6du3xRZmgG22zbOm4sZSPHkzsPq75qT88nRbvynPvJuBWfGzMav/rGuqvE5E1B6fffYZzp07h0WLFrXZ9sp/h/R1J67275Moilc9P3XqVEycOLHFPS5cuACNpuVsoqamJqMR+LYolco22/uqfFGnrkNJXQn8VH7tvrbU2tO3q2lqakLBVYq2SkUQBISGhqKwsNDpaps4a9+ctV8A++aoLNk3hULR6pfHLdp26E5OTKfT2dV2b47KVvu3CrW18Fi2DJ4ffwxZdXMRtMbERFS/8AKaLqsQrN9Kx2XfPgQ0NaFUpUJjQoJDjqTraUUt1sUBM+4A/vsj0LXq0rnz3s1J+ro44Pvu49DFs0vrFyIi6oDPP/8cBw4cQEpKimH71NaYGhmvqqqCXC43TJk31aaysrLFSPzllEplq6PCrX24aiv5N5eviy8KagtQp65Do6YRLgoXi13bXumf9fb84VwURbuOryOctW/O2i+AfXNUtu4bE3UT3N3dUV1dDS8vLybrHaDT6VBdXQ2Pq+zN3WGNjfD4+mt4vvsu5KXNW4ep4+JQ9eKLaBw1qnm7tCvpt80LC0NTQUGLvccdRa26Fu8eehcfH/4YQHMyvqE3cONZIKwGKPAEfu0OiDIB4R5hSAxNlDhiInJGoiji888/x759+7Bw4cJ27cLSq1cvHDhwwOjY4cOHER0dDYWi+aNJTEwMjhw5YjRCnpmZiZiYGIvF7uLigvr6eri7u1vsmkq5Ep4qT1Q3VaO8sRyhCuedBgrY6FlPRNQJMVE3QaFQwMPDAzXtqKStp1Kp0NTUZMWopNORvnl4eBg+dFmUVgu31avh9fbbUOTlAQA0kZGoeu45NNx2W/Ne405KFEVsPL0RizIWobC2EADQN6AvjpUegygTsCvq0hcPwsXSeSnDUrjnOBFZxWeffYbdu3fjueeeg5ubm2EU3N3dHSqVCgCwcuVKlJWV4bHHHgMAjB8/Hlu3bsWXX36JMWPG4MSJE9ixYweefPJJw3WTk5OxYMECrF+/Htdffz3279+PI0eOtGtafXu5uLigtrYWlZWV7RpVb+/zUFuvRW55LkrkJXALcXOI5UZ2+awnIurE+K9qKxQKBby927c3tCAITru3s931TRTh+sMP8HrrLSizswEA2tBQVD/1FOruvBPoQCEcR5BVmoX5e+ZjT8EeAEA3r25YOHQhxncfjx9yfsD8PfNRUHtpjWCYRxhShqUgOcox198Tkf3btm0bAGDhwoVGx+fMmYORI0cCAMrLy1FSUmI4FxwcjBdffBFffvkltm7dCj8/PzzwwAOGrdkAIDY2FvPmzcO3336LVatWITQ0FPPmzbP4HurtHQk253mocFMg+Ydk1GnqsH7Selwfcr0lQrUau3vWExERE3VyHKpffoH34sVQHToEAND5+qL6scdQO3Mm4Obce3tXNFbg7QNvY3nWcuhEHVzlrnhs4GN4JP4Rw77myVHJmNB9AvYV7UOTqgmqJhUSQhI4kk5EVvXdd9+12Wbu3LktjsXFxWHx4sVXfd/QoUONkndH4a50xy2Rt2DNyTVYm73W7hN1IiKyP0zUye4p//gD3m++CZfffgMA6NzdUfvww6h55BGI7Zz14Kh0og7fHv8Wb+5/E2UNZQCaE/IFiQsQ4RXRor1cJkdSeBJHRoiIJDaj1wysObkGG09vRMqwFKjkKqlDIiIiB8JEneyW4sQJeL31Ftx++AEAICqVqP3731Hz+OPQtXNbA0f2R/EfeDn9ZRy6cAgA0Mu3FxYlLcJNXW6SNjAiImrTDeE3IMQ9BEV1RdiRuwM3R94sdUhERORAmKiT3ZHn5sLr7bfhtmYNBJ0OokyG+unTUf3Pf0LbtavU4VndhboLeHP/m1h1YhUAwFPpiacHP40H+z0Ipcy51+ATETkLuUyOKT2m4OMjH2PNyTVM1ImIyCxM1MluyC5cgOe778Lj668hqNUAgPpbbkH1c89BY8HteOyVWqfGl1lf4j+//wfV6ua94G/vdTv+lfAvBLu3vd0RERHZl+m9puPjIx9j+9ntqGisgK+Lr9QhERGRg2CiTpITqqrg+dFH8PjkE8jq6gAAjcOHo+qFF6AeNEji6Gzjt/zf8Er6KzhefhwA0D+wP15Leg3XhVwncWRERHSt4vzj0NuvN/4q/wubT2/G3/r8TeqQiIjIQTjvZtNk/+rr4fG//yFk2DB4/fe/kNXVoWngQJR88w1KV63qFEl6Xk0eHvn5Edyx5Q4cLz8OPxc/LB6+GFsmb2GSTkTk4ARBwPRe0wEAa0+ulTgaIiJyJBxRJ9tTq+G+ahW8liyBvLCw+VCvXqh+7jk03HILIAgSB2h9DZoGfHzkY7x36D3Ua+ohE2S4r899eHbIs/Bz9ZM6PCIispApPabgjX1vIKMwA7nVuejq5fy1VoiIqOOYqJPt6HRw3bQJ3m+9BUVODgBA06ULqv/5T9RPnw4oOsd/jj+d/QkL9y5ETlUOACAhJAGv3vAq+gX0kzYwIiKyuHDPcCSFJ+G3/N+wJnsN5g2eJ3VIRETkADpHZkTSEkW47NgB78WLoTx2DACgDQhAzRNPoPa++wAXF4kDtI3TlaexYM8C7MjdAQAIcQ/By4kvY2qPqRA6wSwCIqLOanqv6fgt/zesPbkWTw56kv/mExFRm5iok1Wp9u2D15tvwmXfPgCAzssLNf/4B2offhiip6fE0dlGrboW7x56F8syl6FJ1wSlTImH+z2MJwc9CU9V5/g7ICLqzJIjk/Gv3f/CqcpTOFxyGAODBkodEhER2Tkm6mQVimPH4L14MVx//hkAILq4oPaBB1A9dy5Ef3+Jo7MNURSx8fRGLMpYhMLa5rX4IyNGImVYCnr69pQ4OiIishUvlRcmRE7AhlMbsCZ7DRN1IiJqExN1sij5mTPw+s9/4L5+PQBAlMtRd9ddqJ43D7rwcGmDs6Gs0izM3zMfewr2AAC6eXXDwqELMb77eE55JCLqhKb3nI4NpzZgw6kNmD90PpQypdQhERGRHWOiThYhKyyE19KlcP/mGwgaDQCgftIkVD3zDLQ9ekgcne1UNFbg7QNvY3nWcuhEHVzlrnhs4GN4JP4RuCncpA6PiIgkMiJiBAJcA1DaUIpd53dhbLexUodERER2jIk6dYhQXg7PDz+Ex+efQ9bQAABoGDUKVS+8AE2/zlPFXCfq8O3xb/Hm/jdR1lAGAEiOSsaCxAWI8IqQODoiIpKaQqbAlB5T8Nmxz7Amew0TdSIiuiom6tQ6rRaqffuApiaoVCo0JiQAcjkAQKithcenn8Lzo48gq6oCADRddx2qXnwRTUOHShm1zf1R/AdeTn8Zhy4cAgD08u2FRUmLcFOXm6QNjIiI7Mr0XtPx2bHPsO3sNlQ3VcNL5SV1SEREZKeYqJNJrqmp8Jk/H/KCAgBAAABtWBgqX3kF8tJSeP73v5CXlAAA1H36oOr559E4dizQidZfl9SX4M19b+LbE98CADyVnnh68NN4sN+DXHtIREQtxAfGo6dvT5ysOInUM6m4M/ZOqUMiIiI7xUSdWnBNTYXf7NmAKBodlxUUwG/OHOhTcU337qh+5hnUT5kCyGQ2j1Mqap0aX2Z9ibcPvI2qpubZBDN6zcBLCS8h2D1Y4uiIiMheCYKAaT2n4a3f38Lq7NVM1ImIqFVM1MmYVguf+fMBUcSVY+P616JMhspFi1B3772ASmXrCCX1W/5veCX9FRwvPw4A6B/YH68mvYrrQ66XODIiInIE+kR9T8Ee5NXkoYtnF6lDIiIiO9R5hkGpXVQZGZAXFLRI0i8n6HTQxMZ2qiQ9ryYPj/z8CO7YcgeOlx+Hn4sfFg9fjC2TtzBJJyKiduvq1RVDQ4dChIj1J9dLHQ4REdkpJupkRF5cbNF2jq5B04D//vFfjPh+BDad3gSZIMP9cffj1zt+xd/6/A1ymVzqEImIyMFM6zUNALDm5BqIVywzIyIiApio0xW0we1bY93edo7sp7M/YcyaMXjr97dQr6lHQkgCfpj6A9644Q34ufpJHR4RETmoiVET4SJ3wfHy4zhWdkzqcIiIyA4xUScjTYmJ0IaFQWylersoCNCEh6MpMdHGkdnO6crTuO/H+zBz20zkVOUgxD0E7416D2tvW4t+AZ1nb3giIrIOHxcfwz7qa7LXSBwNERHZIybqZEwuR+WiRS0qvgMwJO9VKSmG/dQdkVanRXp+Or458g3S89Oh1WkBALXqWry5/02MWT0GO3J3QClTYk78HPxy+y+Y1nMahE609RwREVnX9J7TAQDrT66HRqeROBoiIrI3rPpOLTQkJ6Pm0Ufh9b//GR3XhoWhKiUFDcnJEkXWcalnUjF/z3wU1BYYjoV5hGFi1ERsOrMJhbWFAICRESORMiwFPX17ShUqERE5sVFdR8HPxQ/F9cX4Lf83jIgYIXVIRERkR5iok2murgCAhlGj4PrwwyhVqdCYkODQI+mpZ1Ixe/tsiDCeLVBQW4BPjn4CAOjm1Q0Lhy7E+O7jOYJORERWo5KrMKnHJHyZ9SVWZ69mok5EREY49Z1MUhxrLm7TOGoUcPfdaEpKcugkXavTYv6e+S2S9Mt5Kb3w07SfMCFyApN0IiKyumk9m6u//5DzA2rVtRJHQ0RE9oSJOpmkvJioa/o5R/G0jMIMo+nuplSrq5FZkmmjiIiIqLMbEjwEkd6RqNfU48ecH6UOh4iI7AgTdWpBKC+HIi8PAKCOi5M4Gssormvfvu/tbUdERNRRgiAYisqx+jsREV2OiTq1oMzKAgBounWD6O0tcTSWEezevn3f29uOiIg6Ea0WqvR04Jtvmn/Xai126ak9pwIAfs3/FUV1RRa7LhEROTYm6tSCftq7um9fiSOxnMTQRIR5hEGA6bXnAgSEe4QjMdR594cnIiLzuaamIiQxEQEzZgD33IOAGTMQkpgI19RUi1w/yicKQ4KHQCfqsP7keotck4iIHB8TdWrBGRN1uUyORcMWmTynT95ThqVALnPcgnlERGRZrqmp8Js9G7IC4xonssJC+M2ebbFkfXqvi9PfT3L6OxERNWOiTi04Y6IOAMlRyfh4zMeQCcb/2Yd5hGHZ2GVIjnLc/eGJiMjCtFr4zJ8PiGKLuViC2LyDiPeCBRaZBn9b9G1QypQ4VnoMf5X91eHrERGR42OiTsYaG6HIzgYAaJwsUQeAWP9Y6EQdlDIllk9ejtUTV2PvXXuZpBMRkRFVRgbkBQWtLJhqTtYV+flQZWR0+F7+rv4Y3XU0AGDtybUdvh4RETk+JupkRJGdDUGjgc7XF9rwcKnDsbjf8n8DACSEJuD+gfcjKTyJ092JiKgFeXH7dgFpb7u26Ke/rz25FjpRZ5FrEhGR42KiTkYM097j4gChtXEEx6VP1JPCkySOhIiI7Jk2uH27gLS3XVvGdB0Db5U3CmoLkJ6fbpFrEhGR42KiTkacdX06AOhEneHDzw3hN0gcDRER2bOmxERow8IgtvKltSgI0ISHoynRMruFuCpccVv0bQA4/Z2IiJio0xWcOVH/s+xPlDeWw13hjoFBA6UOh4iI7JlcjspFzbuFXJms619XpaQAcsstn5res3n6+5YzW1CvqbfYdYmIyPEwUadLRNGpE3X9tPfE0ESo5CqJoyEiInvXkJyM8mXLoAsNNTquDQtD+bJlaEi2bCHS60OvR4RnBGrUNdh2dptFr01ERI6FiToZyHNzIauuhqhSQdOzp9ThWBynvRMRkbkakpNRlJGBirffBgDoXF1RnJ5u8SQdAGSCDNN6TgMArMnmnupERJ2ZQuoAAGDr1q3YuHEjKioqEBERgZkzZ6JPnz6ttv/111+xceNGFBQUwN3dHQMHDsR9990HLy8vG0btfAyj6TExgMq5Rpw1Og32FuwFwEJyRERkJrkc9bffDt+XXoKsoQHys2ehtdIX2tN7Tce7h97FzvM7UVJfgkC3QKvch4iI7JvkI+rp6elYvnw5pk2bhsWLF6NPnz544403UFJSYrL9X3/9hffffx+jRo3CO++8g6effhqnTp3CRx99ZOPInY8+UXfG/dOPlBxBtboa3ipv9AvoJ3U4RETkaBQKYMAAAIDqyBGr3aanb08MCBwArajFhlMbrHYfIiKyb5In6ps3b8bo0aMxZswYw2h6YGAgtm0zvTbrxIkTCA4ORnJyMoKDg9G7d2+MHTsWp0+ftnHkzkfRCdanDwsbxn3TiYjo2gwZAgBQZmZa9TaX76lORESdk6RT3zUaDU6fPo0pU6YYHY+Pj8fx48dNvic2NhbffvstDh48iEGDBqGyshJ79+7FoEGDWr2PWq2GWq02vBYEAW5uboY/d5T+Gpa4lpQMI+r9+rXok6P3TZ+o39DlBgiC4DT9MoV9c0zsm2Ny5r6RCfpE3Yoj6gAwucdkpOxNwaELh3Cy4iR6+jpf3RgiIro6SRP1qqoq6HQ6+Pj4GB338fFBRUWFyffExsbiiSeewNKlS6FWq6HVanHdddfhwQcfbPU+69atw+rVqw2vo6KisHjxYgQFBVmkH3qhV1SFdShlZUBeHgAgYPRo4IqfiSP3rUnbhP1F+wEAU+KnICwkzHDOkfvVFvbNMbFvjsmZ+0aX0SfqR48COh0gs87ExEC3QIyIGIEduTuwJnsNnr/+eavch4iI7JddFJMzNRLR2ujE+fPn8cUXX2DGjBkYMGAAysvLsWLFCnzyySd49NFHTb5n6tSpmDhxYotrX7hwARqNxiLxh4aGorCwEKIodvh6UlD99hsCAGi6dcOFujqgrg6Ac/QtoyAD9Zp6BLgGwF/rj4KCAqfoV2vYN8fEvjkmS/ZNoVBY/AtksrC4OIguLpBVV0OekwNtdLTVbjWj1wzsyN2BdSfX4dnrnoVMkHy1IhER2ZCkibq3tzdkMlmL0fPKysoWo+x669atQ2xsLCZNmgQA6N69O1xdXTF//nzcdddd8PPza/EepVIJpVJp8nqW/NAoiqLDfghVHD0KoHl9uqk+OHLfduftBtBc7V2AYNQPR+5XW9g3x8S+OSZn7lt7ZGVlYePGjThz5gzKy8vxzDPPICEhodX2H3zwAXbt2tXieEREBN555x0AwM6dO/Hhhx+2aLNixQqopNqZRKmEOi4Oqj/+gPLIEasm6uO7j4en0hO5NbnYX7gfiWGJVrsXERHZH0kTdYVCgejoaGRmZho90DMzM3H99debfE9jYyPkcuNiYLKLU88684ekjlJ2gkJy3D+diMg6GhsbERkZiVGjRuHti/uNX80DDzyAe++91/Baq9Xi2WefxdChQ43aubm54b///a/RMcmS9IvU8fFQ/fEHVJmZaJg82Wr3cVO4ITkqGd+d+A5rTq5hok5E1MlIPo9q4sSJ+Pnnn7Fjxw6cP38ey5cvR0lJCcaNGwcAWLlyJd5//31D++uuuw779u3Dtm3bUFRUhL/++gtffPEFevbsCX9/f6m64fCcNVGv19TjYPFBAEzUiYisZdCgQbjrrruQmNi+ZNLd3R2+vr6GX6dOnUJtbS1GjRpl1E4QBKN2vr6+VojePOp+zVt8WrvyOwBM79lc/X3T6U1o0DRY/X5ERGQ/JF+jnpSUhOrqaqxZswbl5eXo2rUrXnzxRcM6vfLycqM91UeOHIn6+nr8+OOP+Oqrr+Dh4YG+ffvib3/7m1RdcHyNjVBkZwNwvj3U9xftR5OuCaEeoYjyjpI6HCIiMmHHjh3o379/izX6DQ0NmDNnDnQ6HSIjI3HnnXciKqr1f8utucuL/v2ai3upK48ehdB8okPXvZobutyAMI8wFNQWYEfuDtwafatV7uPMuxewb47HWfsFsG+OSqq+SZ6oA8CECRMwYcIEk+fmzp3b4tgtt9yCW265xdphdRqK7GwIGg10vr7QhodLHY5FGaa9h93glP9wEBE5uvLychw6dAhPPPGE0fHw8HDMmTMH3bp1Q319PVJTU/HKK6/g3//+N8LCwkxeyxa7vASOGAGoVJBVVSGsrg7oad2t0+4bcB/eSn8Lm3M3Y9YNs6x6L2fevYB9czzO2i+AfXNUtu6bXSTqJC3DtPe4OKuODEjh8v3TiYjI/uzcuRMeHh4tis/FxMQgJibG8Do2NhbPP/88fvjhh1a3ZLXmLi+GCv9lZfDv0weqw4dR/vPPaPDw6NB123Jz+M14C28hNTsVx84cg7+r5Zf5cWcGx+SsfXPWfgHsm6OSaocXJurktOvTq5uqkXmheQ3hDWFM1ImI7I0oikhLS8ONN94IheLqH0lkMhl69OiBwsLCVtvYYpcXURSh7t8fqsOHocjMhHjbbRa5bmti/WLRN6AvjpUew8ZTG3F/3P1Wu5cz717AvjkeZ+0XwL45Klv3TfJiciQ9Z03UMwozoBW1iPSORIRXhNThEBHRFbKyslBYWIjRo0e32VYURZw9e9Y+CsrFxwMAVDYoKAcA03pOAwCsyV5jk/sREZH0mKh3dqLotIm6ftp7UliSxJEQETm3hoYG5OTkICcnBwBQXFyMnJwcQzHYK3dw0duxYwd69eqFbt26tTj3/fff49ChQygqKkJOTg7+97//IScnB+PHj7dqX9pDn6grjx4FbDC6MrXnVMgEGQ4UH0BOVY7V70dERNLj1PdOTp6bC1l1NUSVChorF8SxNe6fTkRkG6dOnUJKSorh9VdffQUAGDFiBObOndtiBxcAqKurQ0ZGBmbOnGnymrW1tVi2bBkqKirg7u6OqKgopKSkoKcdPKvUsbEQlUrIKiogP3cO2u7drXq/EPcQ3Bh+I3bl7cLa7LV4esjTVr0fERFJj4l6J2cYTY+JAVQqiaOxnLKGMhwrbe5bUjhH1ImIrKlv37747rvvWj1vagcXd3d3rFixotX3zJw5s9UkXnIqFdS9e0N15AiUmZlWT9QBYFqvadiVtwtrTq7BU4Of4k4mREROjlPfOzl9ou5s+6fvLdgLAIjxjUGwe7DE0RARkbMxTH8/csQm97sl8ha4KdyQU5WDg8UHbXJPIiKSDhP1Tk7h5OvTOe2diIisQd2/PwDbFZTzUHrglshbAABrTrKoHBGRs2Oi3sk5fSE5TnsnIiIrMBpRt9F2PdN7TgcAbDi1AU3aJpvck4iIpMFEvRMTysuhyMsDAKjj4iSOxnKK6oqQXZENAQKGhg2VOhwiInJC6t69LxWUO3/eJvcc3mU4gt2CUdFYgZ3nd9rknkREJA0m6p2YMisLAKDp1g2it7fE0VhOen46AKBvQF/4u/pLHA0RETklFxeoY2MBAEobTX9XyBSY0nMKAGB19mqb3JOIiKTBRL0Tc9Zp7/pEnevTiYjImgzT322UqAOXpr9vP7cdlY2VNrsvERHZFhP1TsxZE3WuTyciIltQ9+sHwHaV34Hm2WKxfrFo1DZiy5ktNrsvERHZFhP1TswZE/Xc6lycrT4LuSBHYmii1OEQEZETMxpRt1FBOUEQDKPqa7JZ/Z2IyFkxUe+sGhuhyM4G4Fx7qOunvQ8IGgAvlZfE0RARkTNT9+kDUaGAvLwc8ovFWW1hSs8pECBgb+Fe5Fbn2uy+RERkO0zUOylFdjYEjQY6X19ow8OlDsdidufvBsD16UREZAOurtDExACw7fT3Lp5dMCxsGABg3cl1NrsvERHZDhP1Tsow7T0uDhAEiaOxDFEUkV7AQnJERGQ7TRIUlAOAGb1mAADWnFwD0UbT7omIyHaYqHdSzrg+/XTlaRTWFkIlU+G6kOukDoeIiDoBdf/+AGw7og4AyVHJcJW74mTFSWSW2PZLAiIisj4m6p2UMybq+mrvQ0KGwE3hJnE0RETUGUhRUA4AvFReGN99PIDmUXUiInIuTNQ7I1F06kSd096JiMhW1H36QJTLIS8thSw/36b3nt6rufr7hlMboNFpbHpvIiKyLibqnZA8Nxey6mqIKhU0PXtKHY5F6EQd9hTsAcBEnYiIbMjNzVBQTmXj6e8jIkYgwDUAJfUl2HV+l03vTURE1sVEvRMyjKbHxAAqlcTRWMbx8uMobSiFm8INA4MGSh0OERF1IoZ16jYuKKeUKTG5x2QAwNqTa216byIisi4m6p2QPlF3pv3T9dPeE0ISoJI7x5cPRETkGAyV3208og5cmv7+Y86PqGmqsfn9iYjIOpiod0IKrk8nIiKyGKMRdRtvlTYgcAB6+PRAg7YBW3K22PTeRERkPUzUOyFnKySn1Wmxt2AvAOCGLkzUiYjItjR9+0KUySAvKYGssNCm9xYEAdN6TgMArM3m9HciImfBRL2TEcrLocjLAwCo4+IkjsYyjpYeRVVTFbxV3ugX0E/qcIiIqJMRLysoJ+X099/yf0N+jW0rzxMRkXUwUe9klFlZAABNt24Qvb0ljsYy9NPeE0MToZApJI6GiIg6I/30d5WNC8oBQFevrkgMTYQIEetPrbf5/YmIyPKYqHcyzjbtHeD6dCIikp5aX1BOgkQdwKXp76z+TkTkFJiodzLOlqg3aZuQUZgBgIk6ERFJx1BQToKp7wAwMXoiVDIV/iz7E8dKj0kSAxERWQ4T9U7G2RL1QxcOoV5TD39Xf/T27y11OERE1Emp9QXliottXlAOAHxdfDG2+1gAwJrsNTa/PxERWRYT9c6ksRGK7GwAzrOHun7ae1JYEmQC/3MmIiJpiO7u0PTsCUC6UfXpPZuLyq0/tR5anVaSGIiIyDKY2XQiiuxsCBoNdL6+0IaHSx2ORRgS9fAkiSMhIqLOTurp76O7joaviy+K6ooMz0ciInJMTNQ7EcO097g4QBAkjqbj6jX1OFB0AADXpxMRkfT0BeWkqPwOACq5CpOiJwEAVmevliQGIiKyDCbqnYizrU//veh3NOmaEOoeih4+PaQOh4iIOjlD5XeJRtQBYFqv5urvP+T8gDp1nWRxEBFRxzBR70ScLVFPz08H0DztXXCCGQJEROTY1H37QhQEyAsLISsuliSG64KvQ6R3JOo0dfjx7I+SxEBERB3HRL2zEEWnS9T16++Ghw+XOBIiIiJA9PC4VFBOounvgiAY9lRn9XciIsfFRL2TkOfmQlZdDVGlMnyIcGQ1TTU4dOEQABaSIyIi+yF1QTkAmNpzKgDgl7xfUFwnzcg+ERF1DBP1TsIwmh4TA6hUEkfTcRmFGdCKWnTz6oauXl2lDoeIiAiAfSTq0T7RGBw8GDpRh/Wn1ksWBxERXTsm6p2EPlF3tv3TWe2diIjsidSV3/Wm92reU53T34mIHBMT9U5C4WTr09MLmgvJMVEnIiJ7ou7Xr7mgXEEBZCUlksUxKXoSFIICR0uP4njZccniICKia8NEvZNwpkJy5Q3lOFpyFADXpxMRkX0RPT2hiY4GIF1BOQDwd/XH6G6jAQBrT66VLA4iIro2TNQ7AaG8HIq8PACAOi5O4mg6bm/BXogQ0dO3J0LcQ6QOh4iIyIhhP3Wpp7/3bJ7+vvbkWuhEnaSxEBGReZiodwLKrCwAgKZbN4je3hJH03Fcn05ERPbMHgrKAcDYbmPhrfJGfm0+9hbslTQWIiIyDxP1TsCZpr0DXJ9ORET2zV5G1F0VrpgYNREAi8oRETkaJuqdgDMl6hfqLuB4eXNRnGFhwySOhoiIqCX981aRnw9Zaamkseirv285swX1mnpJYyEiovZjot4JOFOirh9Nj/OPg7+rv8TREBERtSR6e0MTFQVA+unvCaEJ6OLZBdXqavx09idJYyEiovZjou7sGhuhyM4G4Bx7qHN9OhEROYImO5n+LhNkmNZzGgBgzUlOfycichQKqQMAgK1bt2Ljxo2oqKhAREQEZs6ciT59+phs+8EHH2DXrl0tjkdEROCdd96xdqgOR5GdDUGjgc7XF9rwcKnD6TAm6kRE5AjU8fHAhg2Sj6gDzdXf3zv0Hnbm7kRpfSkC3AKkDomIiNogeaKenp6O5cuXY9asWYiNjcX27dvxxhtvYMmSJQgMDGzR/oEHHsC9995reK3VavHss89i6NChtgzbYRimvcfFAYIgcTQdk1eTh5yqHMgFOYaG8edNRET2y1D5XeIRdQDo5dcL8YHxyCzJxMbTG/FA3wekDomIiNog+dT3zZs3Y/To0RgzZoxhND0wMBDbtm0z2d7d3R2+vr6GX6dOnUJtbS1GjRpl48gdgzOtT9ePpscHxcNL5SVxNERERK3TJ+qK8+chlJVJHM2lonKs/k5E5BgkHVHXaDQ4ffo0pkyZYnQ8Pj4ex48fb9c1duzYgf79+yMoKKjVNmq1Gmq12vBaEAS4ubkZ/txR+mtY4lqWpk/UNf36XVN89tS39PxL27J1NB576pelsW+OiX1zTM7cN+oY0dsbmshIKHJyoDpyBI0jRkgaz+ToyVi0dxH+uPAHTlacRE/fnpLGQ0REVydpol5VVQWdTgcfHx+j4z4+PqioqGjz/eXl5Th06BCeeOKJq7Zbt24dVq9ebXgdFRWFxYsXXzW5vxahoaEWvV6HiSKQlQUA8B05Er5hYdd8Kan7Jooi9hTtAQBM6jcJYR3oy+Wk7pc1sW+OiX1zTM7ct/bIysrCxo0bcebMGZSXl+OZZ55BQkJCq+2PHTuGlJSUFseXLFmCLl26GF7v3bsXq1atQlFREUJCQnD33Xdf9br2Rh0fD0VODpSZmZIn6kHuQRgRMQI7cndg3cl1ePa6ZyWNh4iIrk7yNeqA6ZGI9oxO7Ny5Ex4eHm0+tKdOnYqJEye2uPaFCxeg0WjMjLYlQRAQGhqKwsJCiKLY4etZivzcOQRXVUFUqVDo4wMUFJh9DXvp2+nK0zhfdR5KmRLRqmgUXENfLmcv/bIG9s0xsW+OyZJ9UygUFv8C2VYaGxsRGRmJUaNG4e233273+5YuXQp3d3fDa29vb8OfT5w4gaVLl+LOO+9EQkIC9u3bhyVLlmDRokXo1auXReO3FnX//nDbuNEuCsoBzUXlduTuwNqTa/HMkGc4E4SIyI5Jmqh7e3tDJpO1GD2vrKxsMcp+JVEUkZaWhhtvvBEKxdW7oVQqoVQqW72OpYiiaFcfQhVHjwIA1DExEJXK5hH2ayR1337La16fPiR4CNzkbhaLRep+WRP75pjYN8fkzH1rj0GDBmHQoEFmv8/HxwceHh4mz23ZsgXx8fGYOnUqgOYv3bOysrBlyxbMmzevI+HaTJO+oJydJOoTIifAQ+mBc9XnsL9oPxJCHWd2AhFRZyNpoq5QKBAdHY3MzEyjUfHMzExcf/31V31vVlYWCgsLMXr0aGuH6bAM69OdqJAct2UjInIezz33HNRqNSIiIjBt2jT069fPcO7EiRO49dZbjdoPGDAAqamprV7PmjVprqUegebiXuqKc+cgq6iA6OfXoRg6yl3pjlujbsV3J77D2pNrkRiWCMC5ay2wb47HWfsFsG+OSqq+ST71feLEiXjvvfcQHR2NmJgYbN++HSUlJRg3bhwAYOXKlSgrK8Njjz1m9L4dO3agV69e6NatmxRhOwSFk1R8F0XRkKgnhSdJHA0REXWUn58fZs+ejejoaGg0Gvzyyy949dVXsWDBAsTFxQEAKioq4Ovra/Q+X1/fq9awsUVNGrPqEYSFAdHRwOnTCM3PBy72TUqzE2fjuxPfYfOZzfhk2idwUbgYzjlzrQX2zfE4a78A9s1R2bpvkifqSUlJqK6uxpo1a1BeXo6uXbvixRdfNDxUy8vLUVJSYvSeuro6ZGRkYObMmRJE7DicZWu24+XHUdpQCle5KwYFmz+1koiI7Et4eDjCw8MNr2NiYlBSUoJNmzYZEnVTRFG86oiGNWvSXGs9At++feF2+jSq0tJQawfP41iXWIR5hKGgtgAr9q1AclQy60g4KGftm7P2C2DfHJVU9WgkT9QBYMKECZgwYYLJc3Pnzm1xzN3dHStWrLB2WA5NKC+HIi8PAKC2g2/wO0K/LVtCaAJc5C5ttCYiIkcUExODX3/91fDa1Oh5WzVsbFGTxtx6BOr+/eG2aROUmZl28eFVJsgwpccU/C/zf1iTvQa3RN5iOOfMtRbYN8fjrP0C2DdHZeu+yWx2J7Ip5cVt2TTdukG8rIquI+L6dCIi53fmzBmjqe4xMTE4ckURtszMTMTExNg4so6xt4JyADC913QAwPZz21HeUC5xNEREZAoTdSflLNPetTot9hQ075/O9elERPapoaEBOTk5yMnJAQAUFxcjJyfHsHRt5cqVeP/99w3tt2zZgn379qGgoAC5ublYuXIlMjIycPPNNxvaJCcn4/Dhw1i/fj3y8vKwfv16HDlypEWBOXunvpioK86ehXCV9fW21Me/D+L846DWqbHp9CapwyEiIhPsYuo7WZ6zJOrHSo+hsqkSnkpPxAfGSx0OERGZcOrUKaSkpBhef/XVVwCAESNGYO7cuS3qzWg0Gnz99dcoKyuDSqVC165d8cILL2Dw4MGGNrGxsZg3bx6+/fZbrFq1CqGhoZg3b57D7KGuJ/r5QdO1KxS5uVAePYqm4cOlDglA86h6VkYW1p5ci/v73i91OEREdAUm6k7KWRJ1/bT3oWFDoZDxP1ciInvUt29ffPfdd62ev7LezOTJkzF58uQ2rzt06FAMHTq0w/FJTd2/f3OifuSI3STqU3pMwev7Xsf+ov1Yl70OfiV+UDWpkBCSALlMLnV4RESdHjMfZ9TYCEV2NgDH30M9vaC5kBzXpxMRkaNSx8fDLTUVqsxM1EodzEWhHqHo7dcbWWVZmJt26YuUMI8wLBq2CMlRyRJGR0REXKPuhBTZ2RA0Guh8faG9bPsbR6PWqbG3YC8AJupEROS41PHNS7eUmZkSR3JJ6plUZJVltTheWFuI2dtnI/VMqgRRERGRHhN1J2SY9h4XB1xlv1l7d+jCIdRp6uDn4oc+/n2kDoeIiOia6Cu/K3JyIFRVSRxNc6HW+XvmmzwnonnroQV7FkCr09oyLCIiugwTdSfkNOvT85rXpw8LHwaZwP9UiYjIMYn+/tBERACwj23aMgozUFBb0Op5ESLya/ORUZhhw6iIiOhyzH6ckNMk6tw/nYiInIRh+rsdJOrFdcUWbUdERJbHRN3ZiKJTJOoNmgYcKD4AABgebh8VcomIiK6Vul8/APaRqAe7B1u0HRERWR4TdScjz82FrLoaokoFTc+eUodzzQ4UH0CjthEh7iHo4dND6nCIiIg6RD+irrKDgnKJoYkI8wiDANN1bAQICPcIR2Jooo0jIyIiPSbqTsYwmh4TA6hUEkdz7fTT3pPCkiA4cEE8IiIi4FKirjh9GkJ1taSxyGVyLBq2CABaJOv61ynDUrifOhGRhJioOxl9ou7o+6dzfToRETkTXUAANBe3TFUePSpxNEByVDKWjV2GUI9Qo+Mh7iFYNnYZ91EnIpIYE3Uno3CC9em16locKj4EgIk6ERE5D3vbTz05KhkZd2Vg9cTVCPMMAwAsHLaQSToRkR1gou5knKGQ3L7CfdCIGnT17Ipu3t2kDoeIiMgi1Bf3U7eHgnJ6cpkcSeFJuLPvnQCAXed3SRwREREBTNSdilBeDkVeHgBAHRcncTTXjtPeiYjIGdnbiPrlbu55MwAg7XwaRFGUOBoiImKi7kSUWVkAAE23bhC9vSWO5toZCsmFJ0kcCRERkeXoR9QVp09DqKmROBpjIyJHwFXuisLaQvxV/pfU4RARdXpM1J2IM0x7r2iswJGS5imBTNSJiMiZ6IKCoA0NhSCKhme2vXBVuBpmsqXlpkkcDRERMVF3Is6QqGcUZECEiB4+PRDmESZ1OERERBbVZMfT30d1HQUA2JG7Q+JIiIiIiboTcYZEnevTiYjImdnzOnV9or6/cD+qm6Td652IqLNjou4sGhuhyM4G4Nh7qHN9OhEROTN7rPyuF+UThUjvSGhEjeF5TERE0mCi7iQU2dkQNBrofH2hDQ+XOpxrcqHugqGATVIYE3UiInI++hF1xcmTEGprJY6mpdFdRwPg9HciIqkxUXcShmnvcXGAIEgczbVJL0gHAPTx74MAtwCJoyEiIrI8XXCw3RaUA4CRESMBNBeU4zZtRETSYaLuJJxhfXp6fnOizvXpRETkzAzT3+1wnXpSeBJc5C7Ir81HdkW21OEQEXVaTNSdhDMk6iwkR0REnYGh8rsdrlN3U7hhWNgwAJz+TkQkJSbqzuCy6XOOmqjn1eThTNUZyAQZhoYNlTocIiIiq1H36wfAPhN14FL1d+6nTkQkHSbqTkCemwtZdTVElQqaXr2kDuea6Ke9xwfGw1vlLXE0RERE1mMoKJedDaGuTuJoWtKvU99XuA+1avsreEdE1BkwUXcChtH02FhAqZQ4mmujLyTHae9EROTsdKGh0AYHQ9DpoLDDgnI9fHqgm1c3NOmauE0bEZFEmKg7AUef9i6KItenExFRp6IvKKeyw+nvgiBw+jsRkcSYqDsB/bfxGgdN1M9Wn0VeTR6UMiWuD7le6nCIiIisTj/93R4rvwPAqIhLiTq3aSMisj0m6k7A0UfU9aPpg4IGwV3pLnE0RERE1mfPld+B5hluKpkKuTW5OFV5SupwiIg6HbMT9b1790Kn01kjFroGQnk5FHl5AAB1nz4SR3NtDNPeu3DaOxERdQ76qe+KEycg1NdLHE1L7kp3JIYlAuD0dyIiKZidqC9ZsgRz587F2rVrUVlZaY2YyAzKrCwAgKZ7d4jejlctXRRFQ8V3rk8nIqLOQhcaCm1QUHNBuYvPcntz+fR3IiKyLbMT9QULFqBXr174/vvvMWfOHLz33ns4ceKENWKjdnD0ae/ZFdm4UH8BrnJXDA4eLHU4REREtiEIhlF1e53+ri8ot7dwL+o19jfqT0TkzBTmviEuLg5xcXEoLy/Htm3bsGPHDuzevRuRkZG45ZZbcMMNN0DpoFuEOSJDoh4XJ3Ek10Y/7f360OvhIneROBoiIiLbUffvD9cdO6DKzIT97aYO9PLthS6eXZBXk4f0/HSM6TZG6pCIiDqNay4m5+fnhzvvvBMffvghHn/8cchkMvzvf//DI488gpUrV6K8vNyScVIrHH1EXZ+oJ4UlSRwJERGRbdl75XdBEDj9nYhIIh2u+l5cXIyTJ0+ioKAAMpkM3bp1Q2pqKp588kn8/vvvloiRWtPYCEV2NgDHTNR1og57CvYA4Pp0IiLqfJouKygHOywoBwCju44GAKSdZ6JORGRLZk99B5oLgB04cABbt27FkSNH4OnpiZtvvhnjx4+Hv78/Kisr8b///Q9ffvklrrvuOkvHTBcpsrMhaDTQ+fpCFx4udThmyyrNQkVjBTyVnhgQNEDqcIiIiGxKFx4ObUAA5KWlUP75J9SD7a9Wyw3hN0ApUyKnKgenK08j2ida6pCIiDoFsxP19evX46effkJJSQm6d++Of/zjHxg+fLjRunQfHx9MmjQJKSkpFg2WjBlNexcEiaMx3+783QCAxNBEKGTX9J0RERGR4xIEqOPjIU9LgzIz0y4TdU+VJ64PuR7pBenYmbuTiToRkY2YPfV91apViIqKwoIFC/DWW29h1KhRJovHhYaGYsaMGRYJkkxzmvXp4VyfTkREnZOh8vvRoxJH0jpOfycisj2zhzHfffddBAUFtdnO398ft99++zUFRe3jyIm6WqdGRmEGAGB4+HCJoyEiIpKGvqCcyk4LygHAyK4j8dq+15Cen456TT3cFG5Sh0RE5PTMHlH38/NDQ0ODyXMNDQ3QaDQdDoraQRQdOlHPvJCJWnUtfF18ERfgmFvLERERdZR+RF1x/DjQyucrqfX2641Qj1A0aBuQUZAhdThERJ2C2Yn6xx9/jI8++sjkuWXLluHTTz/tcFDUNnluLmTV1RBVKmh69pQ6HLNdvi2bTOjw5gNEREQOSdulC7R+fhA0Gij/+kvqcEwSBAGjI5qnv+84v0PiaIiIOgezM6Rjx461Wsl9yJAhOHLkSIeDorYZRtNjYwETNQLsnT5R57ZsRETUqV0sKAfY737qADCqK/dTJyKyJbMT9crKSvj5+Zk85+vri4qKio7GRO3gyNPeGzQN+L3odwAsJEdERGQoKGfHgx3DuwyHQlDgdOVpnK06K3U4REROz+xE3d3dHYWFhSbPFRYWws2NBUZsQXExUdc4YKJ+sPggGrQNCHILQi/fXlKHQ0REJClHGFH3VnnjupDmGZWs/k5EZH1mJ+p9+/bF+vXrUVNTY3S8pqYG69evR79+/SwWHLXOkUfU0wvSATRPexcccP93IiIiSzIk6sePA42NEkfTOk5/JyKyHbO3Z7vjjjvw4osv4oknnkBSUhL8/f1RWlqKvXv3QqPR4I477rBGnHQZobwcirw8AIC6Tx+JozHfb3lcn05ERKSnjYiAztcXsooKKI8fNyTu9mZU11F4c/+b+C3/NzRoGuCqcJU6JCIip2V2oh4eHo6UlBR89dVX+Pnnn6HT6SCTyRAXF4e///3vCA8PNzuIrVu3YuPGjaioqEBERARmzpyJPldJQNVqNVavXo1ff/0VFRUVCAgIwNSpUzF69Giz7+2IlFlZAABN9+4Qvb0ljsY8deo6HCw+CICJOhEREQBAENAUHw/XX36BMjPTbhP1OP84hLiHoKiuCPsK9+GmiJukDomIyGmZnagDQGRkJObPn4+mpibU1NTA09MTKpXqmgJIT0/H8uXLMWvWLMTGxmL79u144403sGTJEgQGBpp8z5IlS1BZWYlHHnkEoaGhqKqqglarvab7OyJHnva+r3AfNKIGXTy7oJtXN6nDISIiC8jKysLGjRtx5swZlJeX45lnnkFCQkKr7TMyMrBt2zbk5ORAo9EgIiICt99+OwYOHGhos3PnTnz44Yct3rtixYpr/sxhz9T9+xsSdXslCAJGRozEqhOrkHY+jYk6EZEVXVOirqdSqeDv79+hADZv3ozRo0djzJgxAICZM2fi8OHD2LZtG+65554W7Q8dOoSsrCy8//778PT0BAAEBwd3KAZHY0jU4+IkjsR8XJ9OROR8GhsbERkZiVGjRuHtt99us/2ff/6J+Ph43H333fDw8EBaWhoWL16MN954A1FRUYZ2bm5u+O9//2v0XmdM0gHHqPwONE9/X3ViFdJy07Bg6AKpwyEiclrXlKjrdDr88ccfyMvLQ1NTU4vzM2bMaNd1NBoNTp8+jSlTphgdj4+Px/Hjx02+5/fff0ePHj2wYcMG/PLLL3B1dcWQIUNw1113tfrwVqvVUKvVhteCIBiq01siWdRfw1aJp2Hqe79+Vr+npfum3z99ePhwSRN1W//MbIl9c0zsm2Ny5r6ZY9CgQRg0aFC728+cOdPo9T333IPff/8dBw4cMErUBUGAr6+vhaK0b4aCcn/9BTQ1AXb6hcSNXW6ETJAhuyIb56vPI8IrQuqQiIicktmJenV1NebPn4/8/PxW27Q3Ua+qqoJOp4OPj4/RcR8fn1b3Yy8qKsJff/0FpVKJZ599FlVVVfjss89QU1ODOXPmmHzPunXrsHr1asPrqKgoLF68GEFBQe2Ks71CQ0Mtej2TGhuBEycAAP6jRwNhYda/JyzTt4qGCmSWNE/pmzpoKsK8bRP71djkZyYR9s0xsW+OyZn7Zgs6nQ719fWGmXJ6DQ0NmDNnDnQ6HSIjI3HnnXcaJfJXsuYX89b+UkbXvbtRQTmNDdepm9M3P1c/DAkegv1F+7Hz/E7cF3eftcPrEGf+Ms1Z++as/QLYN0clVd/MTtS/+eYbqFQqfPDBB5g7dy5ef/11eHp64qeffsLBgwfxyiuvmB2EqU639hchiiIA4IknnoC7uzuA5gfzO++8g1mzZpkcVZ86dSomTpzY4toXLlyARqMxO15TsYaGhqKwsNAQn7UojhxBkEYDnZ8fiuRyoKDAqvezZN+25myFTtQh2ica8lo5CmqtG/vV2PJnZmvsm2Ni3xyTJfumUCgs/gXy1Zw9exa1tbWIu7iMqqGhAStWrMCZM2cQHx+PO+64w2YfSjZv3ozGxkYMGzbMcCw8PBxz5sxBt27dUF9fj9TUVLzyyiv497//jbBWvqS2xRfzVv1SZsgQ4OefEXTuHDBhgvXu04r29m1y3GTsL9qP9AvpeC7sOStHZRnO/GWas/bNWfsFsG+OytZ9MztRP3r0KGbMmGFYmy6TyRAaGor77rsParUaX331FebNm9eua3l7e0Mmk7UYPa+srGwxyq7n6+sLf39/Q5IOAF26dIEoiigtLTX58FYqlVAqlSavZ8kPjaIoWj9Rv2x9uth8U6veT88SfdudvxsAkBSWZDcf1m3xM5MK++aY2DfH5Ih9++qrrxAVFWVI1L/55hv8/PPP6NatG9avXw9vb2/ccsstVo9j9+7d+P777/Hss88aPftjYmIQExNjeB0bG4vnn38eP/zwAx588EGT17LmF/O2+MLJKzYWnj//jNrdu1F1WT+szdy+Xed3HQBg++ntOHv+LFRy+5ymD/CLQkfkrP0C2DdHJdWX8mYn6qWlpQgODoZMJoMgCGhoaDCcGzJkCN59912zAo2OjkZmZqZRddjMzExcf/31Jt/Tu3dv7N27Fw0NDXB1bd6/s6CgAIIgICAgwNzuOBxHrvienn+pkBwREUnr3LlzmHBx1FYURezevRu33347pk2bhm+//RZpaWlWT9TT09Px0Ucf4emnn0Z8G1O9ZTIZevTogcLCwlbb2OKLeWt+KdOkLyiXmSnJB9329q2vf18EugWipL4EGQUZGN5luA2i6xhH/DKtvZy1b87aL4B9c1S27pvM3Dd4e3ujrq4OAODn54fc3FzDuZqaGrO3SZs4cSJ+/vln7NixA+fPn8fy5ctRUlKCcePGAQBWrlyJ999/39B++PDh8PLywocffojz588jKysLK1aswKhRo5y2EuzlHDVRL60vxZ9lfwIAksKTJI6GiIjq6urg7e0NoHkafE1NDZKSmv997tevH4qKiqx6/927d+ODDz7AE088gcGDB7fZXhRFnD171qmLyxkqv//5J3DZWnt7IxNkGBkxEgCw8/xOSWMhInJWZo+oR0VFITc3F4MHD8agQYOwevVquLm5QaFQ4JtvvkGvXr3Mul5SUhKqq6uxZs0alJeXo2vXrnjxxRcNUwLKy8tRUlJiaO/q6oqXX34Zn3/+OV544QV4eXlh2LBhuOuuu8ztiuMRRYdN1PXbsvXx74NAt0CJoyEiIk9PT8Pz9ejRo/D19TWsvzN3mnhDQ4PRSHdxcTFycnLg6emJwMBArFy5EmVlZXjssccAXErSZ86ciZiYGMMSOJVKZVja9v3336NXr14ICwszrFHPycnBQw891NGu2y1tZCR03t6QVVVBcfw4NP36SR1Sq0Z3HY3V2auRlpuGlxNfljocIiKnY3aifvPNNxu+Zb/rrruQnZ2NDz74AAAQEhKCBx54wOwgJkyYYJh+d6W5c+e2ONalS5drKlrn6OTnzkFWXQ1RpYKmZ0+pwzGLflu2pDCOphMR2YM+ffrg+++/R3V1NbZs2WK0vVphYaFZy8lOnTqFlJQUw+uvvvoKADBixAjMnTu3xZfu27dvh1arxWeffYbPPvvMcFzfHgBqa2uxbNkyVFRUwN3dHVFRUUhJSUFPB3v+mUUQoO7XDy7p6VAdOWLXibp+m7a/yv9CXk0eunh2kTokIiKnYnaifvkaMm9vb7z11luG6e9dunSBXC63XHRkxDCaHhsLtLIGz17pE3WuTycisg/33HMP3njjDSxfvhwhISFGW6vu2bPHrBlyffv2xXfffdfq+Su/dF+4cGGb15w5c2aL/dY7A3V8PFzS06HMzATuvlvqcFrl7+qPgUEDcbD4IHad34V7et8jdUhERE7FrES9qakJr776Km6//XZDwi4IArp162aV4MiYo057L6gtwOnK05AJMgwNGyp1OEREBCA4OBhLly5FTU1Ni/3LH3roIadeC27Pmi5+vlIeOSJxJG0b3XU0DhYfRFpuGhN1IiILM6uYnEqlwrlz5zhqLhF9oq5xsERdX+29f0B/+LiY3naPiIikcWWS3tTUhG7duhkKzZFtGQrKZWXZdUE5ABjVdRQA4Ne8X6HW2XesRESOxuyq7zExMTh58qQ1YqE2KBx0RJ3T3omI7E96ejq2bt1qeF1YWIinnnoK9913H+bPn4+amhoJo+u8tJGR0Hl5QWhshCI7W+pwrio+MB7+rv6oVlfj96LfpQ6HiMipmJ2o33fffdi+fTt27dpltIc6WZdQVgZFfj4AQN2nj8TRmMdQSI7bshER2Y1NmzahsbHR8Prrr79GbW0tkpOTkZeXh3Xr1kkYXScmk0F9sYicvU9/N9qmLXenlKEQETkds4vJvfzyy9BoNPjwww/x4YcfwsXFBYIgGLX58ssvLRYgNVNmZQEANN27Q3Sg6Yjnqs7hfM15KAQFEkITpA6HiIguKioqQteuXQE0T3c/fPgwHn74YYwYMQLh4eHYtGkT7rvvPomj7JzU/fvDZc8eqDIzUX/nnVKHc1Wjuo7C2pNrsSN3B15MeFHqcIiInIbZiXpiYmKLxJysz1ELyelH0wcFD4KH0kPiaIiISK+xsREuLi4AgJMnT0KtVhu2aIuIiEBZWZmU4XVqan1BucxMiSNp24guIyBAQFZZFgprCxHqESp1SERETsHsRN3UvuZkfYZEPS5O4kjMw/XpRET2yc/PDzk5OYiLi8OhQ4cQHh5uKCBXW1trSOLJ9pouFpRTZGUBGg2gMPvjms0EuAVgQNAAHLpwCDvP78RdsXdJHRIRkVMwe406SUM/9d2RRtRFUWSiTkRkpxISEvDtt9/iP//5D1JTU5GUdKmOyNmzZxESEiJhdJ2bNjoaOk9PyBoa7L6gHHCp+ntabprEkRAROQ+zv6LdtWtXm21GjBhxTcFQKy57UDtSon6y4iSK64vhInfB4ODBUodDRESXueuuu9DQ0IATJ05g+PDhmDx5suHcwYMH0f/iqC5J4GJBOZe9e6HMzITGzovIjooYhSUHl+DXvF+h0WmgkNnvDAAiIkdh9r+kH374YZttmKhbljI7G4JGA52vL3Th4VKH026/FTSPpl8Xch1cFa4SR0NERJdTqVSYPXu2yXOvv/66jaOhK6n7929O1I8etfuCcgODBsLXxRcVjRU4WHyQxWOJiCzA7ET9/fffb3Gsuroa+/fvR3p6OubNm2eJuOgyRvunO1AhP057JyJyDPn5+aipqYGXlxfCwsKkDodwqaCcygEKysllcoyIGIENpzYgLTeNiToRkQWYnagHBQWZPBYdHQ2tVovU1FQWnLMwR6z4rhN1SM9PB8BEnYjIXu3Zswdff/01SktLDccCAgLw97//HUOHDpUwMtIn6opjxwCtFpDLJY7o6kZFjGpO1M+n4fnrn5c6HCIih2fRYnL9+vXD77//bslLEhwzUc8qy0JFYwXcFe4YEDRA6nCIiOgKBw8exNKlS+Hu7o57770Xjz32GO655x64u7tj6dKl+OOPP6QOsVPTREVB5+4OWX09FCdPSh1Om0ZGjAQAHCk5guK6YmmDISJyAhZN1EtKSiCTsZC8Rel0Dpmo60fTh4YNhVKmlDgaIiK60rp16zBgwAC89dZbmDRpEm688UZMnjwZ//73v9G/f3+sXbtW6hA7N7kc6n79ADjGfupB7kHoH9hcgHDn+Z3SBkNE5ATMzqqzsrJa/MrMzMSmTZvw//7f/0O/iw8Vsgx5bi5kNTUQVSpoevaUOpx24/p0IiL7lpOTg/Hjx7f4gl0QBEyYMAE5OTnSBEYG6ouV95VHjkgcSfuMimjepo2JOhFRx5m9Rj0lJaXVc/3798eDDz7YoYDImGE0PTYWUDrGyLRGp8Hegr0AmKgTEdkrmUwGjUZj8pxGo+EMOTugX6fuCCPqADC662i8e+hd7Dq/C1qdFnKZfa+rJyKyZ2Yn6gsWLGhxTKlUIigoCL6+vpaIiS7jiNPeM0syUaOuga+LL+L846QOh4iITOjRowc2btyIwYMHQ6VSGY6r1Wps2rQJPR1oFpezMiTqR486REG5QcGD4KPyQUVjBf648AeuC7lO6pCIiByW2Yl6XBwTL1vSJ+oaB0rU9dPeh4YO5bfpRER26o477sCiRYvw2GOPYejQofD19UVFRQUyMjJQU1OD+fPnSx1ip6fp0aO5oFxdHRSnT0PTq5fUIV2VQqbAjV1uxOYzm7Hz/E4m6kREHWD2vLb8/HxkZWWZPJeVlYWCgoIOB0WXKBxwRJ3bshER2b/evXvj5ZdfRlBQELZu3YpVq1Zh27ZtCA4OxksvvYSAgACpQyS53PD8d6Tp7wCQlpsmcSRERI7N7BH1r776CmFhYSZH1n///XcUFBTg+ee5f6YlCGVlUOTnAwDUffpIHE37NGobsa9wHwAm6kRE9i4uLg6vv/46GhsbUVtbCw8PD7i4uGDv3r1ISUnBqlWrpA6x01PHx8Nl/34oMzNRP3261OG0aWTXkQCAwxcOo7S+FAFu/MKHiOhamD2ifurUKfRpJWmMi4vDqVOnOhwUNVNenLmg6d4dore3xNG0zx/Ff6BB24BAt0DE+MVIHQ4REbWDi4sL/P394eLiInUodAXDFm0OUvk9xD0Ecf5xECGy+jsRUQeYnajX1dXB1dXV5DmVSoXa2toOB0XNHLGQ3OXbsgmCIHE0REREjs2ooJxOJ3E07aOf/s5EnYjo2pmdqPv7++PkyZMmz508eZKV3y3IkKg7UAE/faKeFJYkcSRERESOT9OzJ3SurpDV1kJx+rTU4bTLqK6X9lPXiY7x5QIRkb0xO1G//vrrsWHDBhw9etTo+LFjx7BhwwYkJCRYLLjOTj/13VFG1Os19ThYfBAA16cTERFZhEJh2PnFUQrKDQkZAi+lF8oaynD4wmGpwyEickhmF5ObMWMGDh8+jFdffRXh4eHw9/dHWVkZ8vPzERERgdtvv90acXY+DQ1QZGcDcJxEfX/hfqh1aoR7hCPSO1LqcIiI6Aqn2zkiW1xcbOVIyBxN8fFQHTgA5ZEjqJ82Tepw2qSUKXFjlxuRmpOKtNw0DAoeJHVIREQOx+xE3d3dHa+//jo2b96Mw4cPo6SkBN7e3rjjjjtw6623trp+ncyjzM6GoNFA5+sLXXi41OG0C9enExHZtxdffFHqEOgaqPv3B+A4BeWA5unvqTmpSDufhqeHPC11OEREDsfsRB0AXF1dMWPGDMyYMcPS8dBFRvunO0jSa1ifHs716URE9ujRRx+VOgS6BoaCckeONBeUk5m9ctHmRkaMBNC8G0xZQxn8Xf2lDYiIyMGYnahXVVWhpqYG4SZGefPz8+Hp6QlvB9lKzJ45WsX3qqYqHC5pXofG9elERPZp5MiRUodA10DTqxdEV1fIamogP3MG2h49pA6pTeGe4ejt1xt/lf+FX87/gik9p0gdEhGRQzH7K9lPP/0UGzduNHlu8+bN+PzzzzscFDleop5RkAGdqEOkdyS6eHaROhwiIiLnoVBA3acPAEDlYNPfASDtfJrEkRAROR6zE/Xjx49j4MCBJs8NGDAAx48f72hMpNM5XKJ++fp0IiIisizD9HcHqfwOcJs2IqKOMDtRr66uhqenp8lzHh4eqKqq6nBQnZ08NxeymhqIKhU0PXtKHU67MFEnIiKyniYHTNSvD7keHkoPlNSX4GjJ0bbfQEREBmYn6j4+Pjh37pzJc+fOnWs1iaf2M4ymx8YCSqXE0bStrKEMWWXNe74nhbGQHBERkaUZKr8fPdpcUM4BqOQqDA8fDgDYkbtD4miIiByL2Yn6wIEDsW7dOuTn5xsdLygowPr16zFoEPfK7ChHm/a+p2APACDWLxZB7kESR0NEROR8NDExEF1cIKuuhvzsWanDabfLp78TEVH7mV31/fbbb8fBgwfx7LPPom/fvvD390dZWRmOHTsGT09P3HHHHdaIs1PRJ+oaB0nUOe2diIjIypRKqOPioPrjDygzM6GNipI6onYZFdGcqB8oPoCKxgr4uvhKGxARkYMwe0Td398fb775JoYPH46zZ89i165dOHv2LG688Ub83//9HxSKa9qanS6jcLARdSbqRERE1qef/u5Ild8jvCLQy7cXdKIOv5z/RepwiIgcxjVl1f7+/nj00UcNr3U6HQ4dOoTPPvsMBw8exMqVKy0WYGcjlJVBcXFZgX4rFntWWFuIkxUnIUDA0LChUodDRETktByx8jvQPP09uyIbO8/vxKQek6QOh4jIIXRo+LuwsBBpaWnYtWsXysvLoVAokJiYaKnYOiVlVnNRNk337hC9vSWOpm3pBekAgH6B/TidjYiIyIqaLi8oJ4qAIEgcUfuM6joKy44sw87zOyGKIgQHiZuISEpmJ+pNTU3Yu3cvduzYgT///NNwfOLEiZgyZQq8vLwsGmBn42iF5NLzmxN1TnsnIiKyLk1MDESVCrLKSsjPnoU2MlLqkNolMTQRbgo3FNUV4VjZMfQL6Cd1SEREdq/difrJkyexY8cOpKeno76+Hq6urhg5ciQSExOxePFiDBkyhEm6BRgS9bg4iSNpH65PJyIishGVCuo+faA6fLi5oJyDJOouchfcEH4Dtp/bjrTcNCbqRETt0K5E/ZlnnkFubi4AICYmBqNGjUJSUhJcXV1RV1dn1QA7G/3Ud0cYUT9XdQ7nqs9BISiQEJIgdThEREROT92/f3OifvQoGiY5znrvUV1HYfu57diZuxOPD3xc6nCIiOxeuxJ1fZI+ePBg3HvvvYiIiLBqUJ1WQwMU2dkAHCNR169PHxg8EJ4qT4mjISIicn76gnIqRysod3Gbtv1F+1HVVAVvlf3X4SEiklK7tme7//770b17dxw8eBD//Oc/8dJLL+Hnn39GfX29tePrVJTZ2RA0Guh8faELD5c6nDbpp70nhSVJHAkREVHnYKj8fuRIc0E5B9HduzuifaKhFbX4Ne9XqcMhIrJ77RpRT05ORnJyMk6dOmVYp75s2TIsX74cgwcPBgBW8LQAo/3T7fzvUxRFFpIjIiKyMXVsbHNBuYoKyHNzoe3WTeqQ2m1U11E4XXkaablpuDXqVqnDISKya+0aUdfr0aMHHn74YXz88ceYO3cuevTogb179wIAPvroI2zatAnV1dVWCbQzcKSK76cqT6GwrhAuchcMCRkidThERESdg0oFde/eABxvP/XREaMBAGnn0yA60GwAIiIpmJWo66lUKtx0001YuHAh/vvf/2Ly5MlobGzEihUr8Oijj1o6xk7DkRJ1/bT3IcFD4KZwkzgaIiKizkOt30/9yBGJIzHP0LChcJW7orC2EH+V/yV1OEREds3sfdSvFBoainvuuQd33XUX/vjjD6SlpVkirs5Hp3PIRD0pnOvTiYg6u6ysLGzcuBFnzpxBeXk5nnnmGSQkXH03kKysLHz55Zc4f/48/Pz8MGnSJIwfP96ozd69e7Fq1SoUFRUhJCQEd999d5vX7QwMibqDjai7KlyRFJ6EHbk7kJabhj7+faQOiYjIbnU4UdeTyWQYMmQIhgwxfxr01q1bsXHjRlRUVCAiIgIzZ85Enz6m//E+duwYUlJSWhxfsmQJunTpYva97YU8NxeymhqIKhU0PXtKHc5V6UQd9hTsAQAMDx8ucTRERCS1xsZGREZGYtSoUXj77bfbbF9cXIw333wTY8aMweOPP47jx4/j008/hbe3N4YOHQoAOHHiBJYuXYo777wTCQkJ2LdvH5YsWYJFixahV69e1u6SXTOq/C6Kdl/X5nKjIkYZEvU5A+ZIHQ4Rkd2yWKJ+rdLT07F8+XLMmjULsbGx2L59O9544w0sWbIEgYGBrb5v6dKlcHd3N7z29nbsbT4Mo+mxsYBSKXE0V/dX2V8oayiDu8IdA4IGSB0OERFJbNCgQRg0aFC722/btg2BgYGYOXMmACAiIgKnTp3Cpk2bDIn6li1bEB8fj6lTpwIApk6diqysLGzZsgXz5s2zdBccirp3b4hKZXNBubw8aB1o29xRXUcBe5q3aatpquH2rkRErZA8Ud+8eTNGjx6NMWPGAABmzpyJw4cPY9u2bbjnnntafZ+Pjw88PDxsFabVOeK098TQRKjkKomjISIiR5OdnY34i6PCegMHDkRaWho0Gg0UCgVOnDiBW281rgw+YMAApKamtnpdtVoNtVpteC0IAtzc3Ax/7gj9++1ilxtXV2hiY6E8ehSqI0fQ0LVrhy5ny75F+0YjyjsKZ6rOYHfBbtwSeYtV72dXPzcLc9a+OWu/APbNUUnVN0kTdY1Gg9OnT2PKlClGx+Pj43H8+PGrvve5556DWq1GREQEpk2bhn79+rXa1poP7suv0ZFr6RN1Td++dvUfuKm+6RP1G7rcYFexmoP/mDgm9s0xsW90pYqKCvj4+Bgd8/HxgVarRXV1Nfz8/FBRUQFfX1+jNr6+vqioqGj1uuvWrcPq1asNr6OiorB48WIEBQVZLPbQ0FCLXatDhg4Fjh6F3+nTQFiYRS5pq77dGnsr3t//PjJKMvDgsAdtck+7+blZgbP2zVn7BbBvjsrWfZM0Ua+qqoJOpzP5sG7tQezn54fZs2cjOjoaGo0Gv/zyC1599VUsWLAAcXFxJt9jiwc30MEf3l/N1U99RoyAj4UeuJak75tGp0FGUQYAYHL8ZITZYazm4D8mjol9c0zsG13uyi839Nt1Xe1LD1EUr3p+6tSpmDhxYot7XLhwARqNpiPhQhAEhIaGorCw0C62FnPv2RM+ABrS01FeUNCha9m6b4kBiXgf72PLiS3Iz8+36hdd9vZzsyRn7Zuz9gtg3xyVJfumUCjanYNKPvUdMP1Qbu0f7fDwcISHhxtex8TEoKSkBJs2bWo1Ubfmg1t/vY788ISyMoTm5gIACoODIXbwgWtJV/btUPEhVDVWwVvljVAxFAV2FKs5+I+JY2LfHBP71j7mPLwdnamR8aqqKsjlcnh6erbaprKyssWX+5dTKpVQtlLnxVL/7YmiaBf/HTddnEmozMyEqNNZpKCcrfo2LGwYXOQuyKvJw4nyE4jxi7H6Pe3l52YNzto3Z+0XwL45Klv3TdJE3dvbGzKZzOwH8ZViYmLw66+/tnreFg9u/bWu5XqGae/du0Pn5dVcwdXO6Pu2O283gOaHrEyQOfz/iPzHxDGxb46JfSO9Xr164cCBA0bHDh8+jOjoaCgUzR9NYmJicOTIEaMv2jMzMxETY/2kzhGo+/SBqFBAXlYGeX4+tA60842bwg1DQ4diV94u7MjdYZNEnYjI0cikvLlCoUB0dDQyr9gHNDMzE7Gxse2+zpkzZ1qsY3MkjlhI7obwGySOhIiI7EVDQwNycnKQk5MDoHn7tZycHJSUlAAAVq5ciffff9/Qfvz48SgpKTHso75jxw7s2LEDt912m6FNcnIyDh8+jPXr1yMvLw/r16/HkSNHWhSY67RcXaG5+KWFo+2nDlys/g5g5/md0gZCRGSnJJ/6PnHiRLz33nuIjo5GTEwMtm/fjpKSEowbNw5A88O9rKwMjz32GIDm7VqCgoLQtWtXaDQa/Prrr8jIyMA///lPKbvRIYZEvZWp+/aiSduEfUX7ADBRJyKiS06dOoWUlBTD66+++goAMGLECMydOxfl5eWGpB0AgoOD8eKLL+LLL7/E1q1b4efnhwceeMCwNRsAxMbGYt68efj222+xatUqhIaGYt68eZ1+D/XLNcXHQ5mVBeWRI2i4xbrV0y1tVNdRWLh3ITIKMlCrroWH0nl28iEisgTJE/WkpCRUV1djzZo1KC8vR9euXfHiiy8a1uld+XDXaDT4+uuvUVZWBpVKha5du+KFF17A4MGDpepChymzsgDY/4j6oQuHUK+pR4BrAGL92j/jgYiInFvfvn3x3XfftXp+7ty5LY7FxcVh8eLFV73u0KFDjZJ3Mqbu3x/49lsojxyROhSz9fDpgW5e3XCu+hx+y/8N47uPlzokIiK7InmiDgATJkzAhAkTTJ678uE+efJkTJ482RZh2UZDAxTZ2QDsP1HXT3tPCk/iVkREREQSU1/ci16Zmdlc38aBns2CIGBkxEh89edXSMtNY6JORHQFSdeoE6DMzoag0UDn6wvdZdXs7RHXpxMREdkPdZ8+EOVyyEtKIHPAXVj069TTctNYjJGI6ApM1CWmuLyQnB1/E16nqcOBouYKvUzUiYiI7ICbm6GgnMoBp7/fEH4DVDIVcmtycarylNThEBHZFSbqEnOUiu+/F/6OJl0TQj1CEeUdJXU4REREhIvr1OGYld89lB5ICE0A0DyqTkRElzBRl5ijJOrp+ekAgBvCbuD6dCIiIjvRdPk6dQfEbdqIiExjoi4lnc5hEnXD+vQunPZORERkLwwj6keONBeUczCju44GAOwp2IN6Tb3E0RAR2Q8m6hKS5+ZCVlMDUaWCpmdPqcNpVVVjFQ5dOASgeUSdiIiI7IOmb1+IMhnkFy5AVlQkdThm6+XbC108u6BR22iYvUdEREzUJWUYTY+NBZRKiaNp3a9nf4VW1CLSOxIRXhFSh0NEREQXiZcVlHPE6e/6bdoArlMnIrocE3UJOcq097Sc5gdnUliSxJEQERHRlfTT3x2x8jtwafp72nkm6kREekzUJaRP1DV2nqjvOLMDALdlIyIiskdqBy8oNzx8OBSCAjlVOThTeUbqcIiI7AITdQkpHGBEvayhDIcKDwEAksI5ok5ERGRvmi4vKOeAPFWeuD70egCc/k5EpMdEXSJCWRkU+fkAAHWfPhJHY5pWp8XyY8shQkSEZwQCXAOkDomIiIiuYCgoV1TkkAXlAE5/JyK6EhN1iSizsgAAmu7dIXp7SxxNS6lnUpH4bSL+c+A/AIDzNeeR+G0iUs+kShwZERERXU50dzfsHuOo09/1+6mn56dzmzYiIjBRl4w9F5JLPZOK2dtno6C2wOh4YW0hZm+fzWSdiIjIzhj2Uz96VOJIrk1vv94I9QhFg7YBGQUZUodDRCQ5JuoSMSTqcXESR2JMq9Ni/p75ECG2OKc/tmDPAmh1WluHRkRERK1w9IJygiBgVETzqPqO8zskjoaISHpM1CWin/pubyPqGYUZLUbSLydCRH5tPjIK+W03ERGRvdAn6ioHTdSBS9Pfd+bulDQOIiJ7wERdCg0NUGRnA7C/RL24rtii7YiIiMj61H37QhQEyAsLIbtwQepwrsmNXW6EQlDgVOUpnKs6J3U4RESSYqIuAWV2NgSNBjpfX+jCw6UOx0iwe7BF2xEREZH1iR4eDl9QzlvljetCrgPA6e9EREzUJWC0f7ogSByNscTQRIR5hLV6XoCAcI9wJIYm2jAqIiIiaouhoJyDJuoAMLLrSADcT52IiIm6BOy54rtcJseiYYtMnhPQ/KVCyrAUyGVyW4ZFREREbTAk6keOSBzJtdOvU/8t/zc0ahsljoaISDpM1CVgz4k6AHTz7mbyeJhHGJaNXYbkqGQbR0RERERtcYaCcn39+yLYLRj1mnoWriWiTk0hdQCdjk5n94n6d8e/AwDcGnkrHuj3AJpUTVA1qZAQksCRdCIiIjul7tevuaBcQQFkJSXQBQZKHZLZBEHAyK4j8d2J75CWm4abutwkdUhERJLgiLqNyXNzIaupgahSGYq+2JNGbSPWnlwLALir911ICk/C3f3vRlJ4EpN0IiIiOyZ6ekITHQ3Awae/R3CbNiIiJuo2ZhhNj40FlEqJo2npp7M/obyxHKHuoRjR5f+3d+fxUZVn/8c/s2TfF8hCAoQlEQUUVFaV3fwMVEABcXl80mqxRWvVqq2PVYS2+qht1dal5amWthZZRRFQEVkKgqC2gAiyCGFLAoSsZJ+Z8/sjZCCEQCCTOZnh+3698oI5OXPOdRHbk2vu+77uIWaHIyIiIhegfvq7LzeUuyHlBqwWK7uKd3H4xGGzwxERMYUKdS9r69Pe5+6aC8CE9AkaQRcREfEx/tBQLjoomqvbXw3AyoPapk1ELk0q1L2svlB3tMFCPb88n9WHVgMwqfskc4MRERGRC+YPI+oAQ1OGAtqmTUQuXSrUvczehkfUF+xegMtwcW3CtXSN7mp2OCIiInKBanv2BMB++DDWwkKTo7l4w1OHA7Audx01zhqToxER8T4V6l5kKSzEnpsLQG2PHiZH05BhGO5p75MzJpscjYiIiFwMIyICR1oa4Nuj6j3jexIfEk95bTlfHPnC7HBERLxOhboXBWzfDoCjUyeMyEiTo2noy6NfsrdkLyH2EMakjTE7HBEREblINfXT3314nbrVYnU3tdX0dxG5FKlQ96K23Ehu7s660fQxaWMIDww3ORoRERG5WP6yTr1++rsKdRG5FKlQ9yJ3oX755SZH0lBFbQWL9y4GNO1dRETE1/lD53c4tU3bt0Xfknsi1+xwRES8SoW6F9VPfW9rI+pL9y2lvLaczpGd6Z/Y3+xwREREpAXqC3X7wYNYfLihXGxwLFe1uwrAvSuNiMilQoW6t1RVYd+9G2h7hXp9E7mJ3SdisVhMjkZERERawoiMxNG5MwCB27aZG0wLDUsZBmj6u4hcelSoe0nA7t1YHA5c0dG4kpPNDsdtf+l+NuRtwIKFiekTzQ5HREREPMBf1qkPS60r1NceXkutq9bkaEREvEeFupc02D+9DY1az9s1D4AbOtxAh/AOJkcjIiIinlDjJ4X6le2uJDY4lrLaMr468pXZ4YiIeI0KdS9pix3fnS6nu1C/LeM2k6MRERERT6nt2RPw/YZyVouVoSlDAU1/F5FLiwp1L2mLhfpnuZ+RW55LVGAUmZ0yzQ5HREREPMTdUO7AASzFxeYG00L1hfrKgyvNDURExItUqHuDy9UmC/X6JnLjuo0j2B5scjQiIiLiKUZ0NI5OnQDfH1UfmjIUCxa2F24nvzzf7HBERLxChboX2A4exHriBEZgII5u3cwOB4Di6mI+zPkQgNvSNe1dRETE39SPqgf6eKEeFxLHle2uBGDNoTUmRyMi4h0q1L3APZqekQEBASZHU+f9796n2llNj9ge9I7vbXY4IiIi4mH+0vkdNP1dRC49KtS9oC1Oe69vIjcpfZL2ThcREfFDNSdH1H196js03KbN4XKYHI2ISOtToe4F9YW6o40U6t8WfsvmY5uxW+zc2u1Ws8MRERGRVuBuKJeTg6WkxORoWqZPuz5EB0VTUlPCf47+x+xwRERanQp1L7C3sRH1+iZyozqNIi4kzuRoREREpDUYMTE4UlMB3x9Vt1ltDEkZAmj6u4hcGlSotzJLYSH23FwAanv0MDkaqHXVsnD3QqBu2ruIiIj4r/pR9YBt20yOpOXc+6kf0n7qIuL/VKi3soDt2wFwdOqEERlpcjTw6YFPOV51nHYh7RieOtzscERERKQV+VNDuWEpdevUvy74mmMVx0yORkSkddnNDsDftbVGcvXT3id0n4Ddqh+/iIh4xscff8zixYspLi4mJSWF7OxsejQxk+y1115jzZrG22ylpKTw+9//HoDVq1fz+uuvNzrn7bffJjAw0LPB+7H6Qj3QDwr1dqHt6BXfi68Lvmb1odVMTJ9odkgiIq1GlVorcxfql19uciRwtOIonx74FNDe6SIi4jnr169n1qxZ3HvvvWRkZLBixQqeffZZXnrpJeLj4xud//3vf58777zT/drpdPLYY48xYMCABueFhITwyiuvNDimIv3C1Hd+t+/bh6W0tE3M7muJoSlD+brga1YdWqVCXUT8mqa+t7L6qe9tYUT93T3v4jSc9Gnfh+4x3c0OR0RE/MSSJUsYPnw4I0aMcI+mx8fHs3z58rOeHxoaSnR0tPvru+++o7y8nGHDhjU4z2KxNDgvOjraC9n4FyM2FkdKCuAf69Trl+2tObQGp8tpcjQiIq1HI+qtqaoK++7dgPmFumEYzN1ZN+19cvpkU2MRERH/4XA42Lt3L+PGjWtwvHfv3uzcubNZ11i5ciW9evWiXbt2DY5XVVUxdepUXC4XnTt35rbbbiMtLa3J69TW1lJbW+t+bbFYCAkJcf+9Jerf39LrmKG2d2/shw4R+PXX1A4e3Oj7vpTb1QlXExUYRXF1MVsKtnB1wtXnPN+XcrtQ/pqbv+YFys1XmZVbmyjUL2Rd2+m+/fZbnnnmGVJTU3nxxRe9EOmFCdi9G4vDgSs6GldysqmxbD62mV3Fuwi2BXNz15tNjUVERPxHaWkpLpeLqKioBsejoqIoLi4+7/uLiorYvHkzDz74YIPjycnJTJ06lY4dO1JZWcmyZct46qmnePHFF0lKSjrrtRYtWsSCBQvcr9PS0nj++ecbfQDQEomJiR67ltcMHgzLlhG5ezeRTfzbge/kdmO3G5m/fT5fFH3BmKvGNOs9vpLbxfDX3Pw1L1BuvsrbuZleqF/ourZ6FRUVvPbaa/Tq1atZvwiYocH+6SZ/ujRn5xwAstKyiAz07fVpIiLS9pxtpKE5ow+rV68mLCyMfv36NTienp5Oenq6+3VGRgY///nP+fDDD/nBD35w1muNHz+eMWNOFW719z927BgOh6NZeTTFYrGQmJhIfn4+hmG06FreFtS5M7GAY+NGjuXlNfq+r+U2IH4A85nP4h2L+dFlPzrnub6W24Xw19z8NS9Qbr7Kk7nZ7fZmf3hseqF++ro2gOzsbLZs2cLy5cu54447mnzfzJkzGTx4MFarlS+++MJb4V6QttLxvdJRyeK9iwE1kRMREc+KjIzEarU2+tC8pKSk0Sj7mQzDYNWqVVx//fXY7ef+lcRqtdK1a1fy8/ObPCcgIICAgIAm7+UJhmH43C+h7oZye/dCaSlGRMRZz/OV3Or3U99ybAsFFQXEhcSd9z2+ktvF8Nfc/DUvUG6+ytu5mVqoX+y6tlWrVnHkyBF+8pOfsHDhwvPepzXXrJ1+jTOvVV+oO3r2NHW9xkf7P6K0ppTUiFQGdxh8QbH463oTf80LlJuvUm6+yZ9zay673U6XLl3YunVrg1HxrVu3cu21157zvdu3byc/P5/hw4ef9z6GYbB//35SU1NbHPOlxhUXhyM5GXtuLgHffEPNGd31fU1iWCKXx17O9sLtrDm8hlu63WJ2SCIiHmdqoX4x69ry8vKYPXs206dPx2azNes+3lizBmesW3C54GTH9+ihQ4k+x5qw1rbok0UA/KDvD+iQ3OGiruGv6038NS9Qbr5Kufkmf86tOcaMGcMf//hHunTpQnp6OitWrKCgoIBRo0YBMHv2bAoLC3nggQcavG/lypV0796djh07Nrrm/Pnz6d69O0lJSe416jk5Odxzzz1eycnf1PbuXVeob93q84U61HV/3164nVUHV6lQFxG/ZPrUd2j+ujaXy8Uf/vAHJk6cSPIFNGdrzTVr9dc7c92Cbf9+2peVYQQGkh8VBWdZE+YNh8oOsXLfSgCykrPIu8A4/HW9ib/mBcrNVyk332TWurW2ZtCgQZSVlbFw4UKKiopITU3liSeecOdTVFREQUFBg/dUVFSwceNGsrOzz3rN8vJyZs6cSXFxMaGhoaSlpTF9+nS6devW2un4pdpevQj56CMCvv7a7FA8YmjqUF7d8iqrD63GZbiwWrTjsIj4F1ML9Qtd11ZZWcl3333Hvn37eOutt4BTawUmT57ML3/5S3r27Nnofd5Ys3Z6LAD2k3uV1mZkYNjtYNIvp/N2zcPAYHDyYFLCUy46X39db+KveYFy81XKzTf5c27NlZmZSWZm5lm/d//99zc6Fhoayttvv93k9bKzs5ss4uXC1fbuDUDA1q0mR+IZ1yRcQ0RABIVVhWwt2MpV7a4yOyQREY8ytVC/0HVtISEh/Pa3v21wbPny5Wzbto1HHnmE9u3bt3rMzdUWGsm5DJd773Q1kRMREbl01Rfq9u++w3LiBEZ4uMkRtUyANYDrO1zPspxlrDq4SoW6iPgd0+cJjRkzhk8//ZSVK1dy6NAhZs2a1Whd26uvvgrUdXzt2LFjg6/IyEgCAgLo2LEjwcHBZqbSgLuRnImF+oa8DRw8cZCIgAiy0rJMi0NERETM5YqPx5mUhMUw3L+j+LqhqUMBWHlwpbmBiIi0AtPXqF/MujZfYG8DI+r1o+k3d72ZEHuIaXGIiIiI+Wp69SIkL4+Ar7+mpn9/s8NpsWEpwwDYfGwzhVWFxAbHmhyRiIjnmF6ow4WvazvdpEmTmDRpUmuEddEshYXYc3MBqO3Rw5QYSmtKWbpvKaBp7yIiIlI3/T1k+XK/WaeeHJ7MZTGX8W3Rt6w9vJaxXceaHZKIiMeYPvXdHwWc3JbN0akTRmSkKTF8sPcDqpxVdI/uTt/2fU2JQURERNqO2l69APym8zvAsNS6UXVNfxcRf6NCvRW0hUZypzeRO9tWdyIiInJpcTeU27MHS0WFydF4xtCUoQDubdpERPyFCvVWYHahvrtoN18d/Qqbxcat3W81JQYRERFpW1zt2+NMTMTicvlNQ7l+if0ICwijoLKAb477R04iIqBCvVXUT303q1Cft2seAMNTh9M+tO1sWSciIiLmck9/95N16oG2QK5Lvg7Q9HcR8S8q1D2tqgr77t2AOYW6w+Vgwe4FgJrIiYiISEM1J6e/+0uhDqemv686uMrcQEREPEiFuocF7N6NxeHAGRODKynJ6/dfdXAVRyuPEhscy4iOI7x+fxEREWm7/LGh3PDU4QB8dfQriquLzQ1GRMRDVKh7WP3+6Y4rrgATmrjVT3u/tdutBNoCvX5/ERERabvqC3X77t1YKitNjsYzUiJS6B7dHZfhYu3htWaHIyLiESrUPczMRnLHK4/zyYFPALgtQ9PeRUREpCFXYiLO9u2xuFzuwQV/UL9Nm6a/i4i/UKHuYWYW6u/ueZdaVy2943vTI7aH1+8vIiIibZ8/Tn8fllJXqK8+tBrDMEyORkSk5VSoe9Jp2514u1A3DIO5u07una7RdBEREWlC/X7qgX7UUK5/Un9C7CEcqTjC9sLtZocjItJiKtQ9yHbwINYTJzCCgnB07erVe287vo0dhTsIsgUxrus4r95bREREfIe787sfjagH2YIYnDwY0PR3EfEPKtQ9yD2anpEBAQFevfecnXMAyOyUSXRQtFfvLSIiIr7D3VBu1y7wk4ZyoHXqIuJfVKh7kH3bNsD7096rHFW89917AEzOmOzVe4uIiIhvcSUm4mzXDovTScB2/5kmXr9O/YsjX1BaU2pyNCIiLaNC3YPMWp++fP9yiquLSQpL4rrk67x6bxEREfExFotfNpTrFNmJLlFdcBpO1h1eZ3Y4IiItokLdgwJO30Pdi+qbyE3sPhGb1ebVe4uIiIjv8cdCHTT9XUT8hwp1Tzl+HFtuLgC1Pby3NVruiVzWHFoDwKT0SV67r4iIiPguf+z8Dqemv688tFLbtImIT1Oh7ilbtgDg6NwZIyLCa7ddsHsBBgYDEgeQFpXmtfuKiIiI76o5vaFcVZXJ0XjOgKQBBNuCyS/PZ2fRTrPDERG5aCrUPWXzZgBqL7/ca7c8fe/0SRkaTRcREZHmcSUn44yLw+JwELBjh9nheEyIPYRByYMATX8XEd+mQt1T6gt1L65P35S/iZzSHMICwhiTNsZr9xUREREfZ7G4p78H+Ov094MrTY5EROTiqVD3FBMK9frR9O+lfY+wgDCv3VdERER8n7uhnJ8V6kNThwJ127SdqDlhbjAiIhdJhbonVFXByWlj3irUy2vL+WDvBwDclnGbV+4pIiIi/sM9ou5nnd+7RHWhc2Rnal21rMvVNm0i4ptUqHuAfdcucDhwxcTgSkryyj2X7F1ChaOCtMg0rk241iv3FBEREf9RX6jbd+yAv/+dwPXrwek0OSrPqJ/+/s637/DO1++wPnc9Tpd/5CYilwa72QH4g/r902uvuAIsFq/cs37a+20Zt2Hx0j1FRETEfwRs3oxhsWBxOuG//5s4wJmURMmMGVRlZZkdXouEB4YD8MmBT/jkwCcAJIUlMWPgDLLSfDs3Ebk0aES9pZxOglasAMAVE+OVT6L3luxlY/5GrBYrE7pPaPX7iYiIiH8JXraMmPvugzP2Grfm5xMzZQrBy5aZFFnLLdu3jFc3v9roeH55PlNWTGHZPt/NTUQuHSrUWyB42TIS+vcn5MMPAQj54AMS+vdv9YfbvF3zABiaMpSkMO9MtRcRERE/4XQS9fTTYBicOSfPcrJwj5w2zSenwTtdTp7e8DQGRqPv1R+btmGapsGLSJunQv0iBS9bRsyUKVjz8hocb+1Pop0uJ/N3zwdgUrr2ThcREZELE7hxI7a8vEZFej2LYWDPzSVw40avxuUJG/M3klee1+T3DQxyy3PZmO97uYnIpUWF+sUw8ZPofx3+F/nl+UQHRXNjpxs9fn0RERHxb7ajRz16XltytKJ5MTf3PBERs6hQvwhmfhJd30Tulm63EGQL8vj1RURExL8527f36HltSfvQ5sXc3PNERMyiQv0imPVJdFFVER/nfAzAbenaO11EREQuXE3//jiTkjDOsWuMKzjYvX2bL+mf2J+ksCQsTQ6n1Jm3ax5lNWVeikpE5MKpUL8IZn0S/d5371HjquHy2MvpGd/To9cWERGRS4TNRsmMGQCNinXj5Je1qoq4iRMb9eJp62xWGzMG1uV2ZrF++uv5u+czcuFI1ueu92p8IiLNpUL9Ipzvk2jDYsGRnExN//4evW/9tPfJGZM9el0RERG5tFRlZVE0cyauxMQGx53JyZQ9/jjO2FgCt26l3ZgxBGzdalKUFycrLYuZI2eSGNYwt6SwJP5v5P/x7ph36RjRkUMnDjFx6USe2fAMVY4qk6IVETk7u9kB+KSTn0THTJmCYbG4G8jBqU+mS6dPB5vNY7f85vg3fF3wNQHWAMZ3G++x64qIiMilqSori6rMTII2bSKupobjgYFU9+sHNhuV48cTm51NwM6dxI0fT/Err1A1ZozZITdbVloWmZ0y2XRkEzWBNQTWBNIvoR82a93vZp/c8gkzNs7gn9/+k//b9n+sObSGPwz7A73ie5kcuYhIHY2oX6QmP4lOSqJo5kyqsrI8er/60fRRnUYRGxzr0WuLiIjIJcpmo2bQILj99ro/Tw4yODt2pOD996kaPhxrVRWx991H+Msvg9F4f/K2yma1MSh5ELf3up1ByYPcRTpAeGA4L1z/ArNunEW7kHbsKt7FmPfG8PK/X8bhcpgYtYhIHRXqLVCVlcWRjRs5vmABzJ7N8QULOPr55x4v0mucNSzaswiAyema9i4iIiKtz4iIoHDWLE788IcARL74ItEPPACVlSZH5jmjOo1i5YSVZKVl4TAcvPjVi4xbPI49xXvMDk1ELnEq1FuqiU+iPWnFgRUUVhWSEJrAkJQhHr++iIiIyFnZbJQ+8wzFL7yAYbcT+t57xE+ciNUH91hvSmxwLDNHzOSPw/5IZGAk/zn2HzLfzeSv3/wVl+EyOzwRuUSpUPcBc3bOAWBC9wnYrWorICIiIt5VceedHH/nHVzR0QT+5z/Ejx6Nfds2s8PyGIvFwi3dbmHFrSu4vsP1VDmr+OX6X3LHh3dw+MRhs8MTkUuQCvU27kjFEVYdWgXApPRJJkcjIiIil6qaQYM4tmQJtd26Yc/NJX7cOII/+sjssDyqQ3gHZt80m18P+jXBtmDWHl7LyIUjeXfPuxg+tD5fRHyfCvU2buHuhbgMF9ckXEO36G5mhyMiIiKXMGdaGgWLF1M1ZAjWykpi77mH8Fdf9akmc+djtVj5/hXf5+NbPqZPuz6U1pTyk1U/4b5P76OwqtDs8ETkEqFCvQ0zDMM97f229NtMjkZEREQEjKgoCv/+d0784AcARD73HNE//SlUV5scmWd1i+7Geze/x2NXP4bdYmfpvqUMXzCcT/Z/YnZoInIJUKHehn119Cu+K/mOEHsI3+vyPbPDEREREaljt1P6q19R/OyzGDYboQsXEj9pEtaCArMj8yi71c5DfR9iybglpEenc6zyGNnLs3nsX49xouaE2eGJiB9Tod6Gzd1Zt3f66LTRRARGmByNiIiISEMV//3fHH/7bVxRUQR++WVdk7kdO8wOy+N6xffiw/EfMqXXFCxYmL1zNqPeHcXGvI1mhyYifkotxNuoitoKFu9dDGjau4iItH0ff/wxixcvpri4mJSUFLKzs+nRo8dZz/3mm2+YPn16o+MvvfQSHTp0cL/+/PPPmTt3LkeOHCEhIYHbb7+dfv36tVoOcnFqbriBY4sXE5edjX3fPuLHjqXotdeoHjXK7NA8KtgezLQB0xjVcRQPr3mYA2UHuHXJrfyo94949OpHCbYHmx2iiPgRjai3UctylnGi9gSdIjoxIGmA2eGIiIg0af369cyaNYtbbrmF559/nh49evDss89ScJ5p0C+//DIzZ850fyUlJbm/t2vXLl5++WVuuOEGXnzxRW644QZeeukldu/e3drpyEVwduvGsQ8+oHrwYKzl5cR+//uE/elPftVkrt6g5EGsuHUFk9MnY2DwxtY3GP3eaLYd95/t6kTEfCrU26j6JnIT0yditejHJCIibdeSJUsYPnw4I0aMcI+mx8fHs3z58nO+LyoqiujoaPeX1Xrqebd06VJ69+7N+PHj6dChA+PHj6dnz54sXbq0tdORi2TExHD8n/+k/K67sBgGUb/6FdE/+xnU1JgdmsdFBEbwuyG/4683/pX4kHi+LfqWMe+N4Y+b/4jD5TA7PBHxA5r63gbtL93PhrwNWLBo73QREWnTHA4He/fuZdy4cQ2O9+7dm507d57zvY8//ji1tbWkpKRwyy230LNnT/f3du3axejRoxucf+WVV7Js2bImr1dbW0ttba37tcViISQkxP33lqh/f0uv0xZ5NLfAQEqffx5HRgaR06YROncutpwciv7yF4y4uJZf/wK19s8ts3Mm1yRcw+NrH+fDnA/53y/+l08OfMIfhv6BtKi0VrlnPX/9b9Jf8wLl5qvMyk2Fehs0f/d8AK7vcD0dwjuc52wRERHzlJaW4nK5iIqKanA8KiqK4uLis74nJiaGKVOm0KVLFxwOB//617/41a9+xbRp07j88ssBKC4uJjo6usH7oqOjm7wmwKJFi1iwYIH7dVpaGs8//zzt2rW7qNzOJjEx0WPXams8mtsvfwnXXAO33UbQxo0k3nwzLFkCJ3++3taaP7ckkliatpR/bP0HP/nwJ3x15CtGvTuK3934O+67+r5W/+XeX/+b9Ne8QLn5Km/npkK9jXEZLubtmgeoiZyIiPiOsxUjTRUoycnJJCcnu1+np6dTUFDABx984C7Uz8YwjHMWPePHj2fMmDGN7n/s2DEcjpZNR7ZYLCQmJpKfn4/hZ+uuWy23K6/E/sEHxNx9N/Z9+3ANGEDxG29QPXy45+5xHt78uY1qP4oVt67gkdWPsC53HT9e+mPmbpnL74b8jqSwpPNf4AL563+T/poXKDdf5cnc7HZ7sz88bhOF+oV0iv3222/55z//yeHDh6murqZdu3aMHDmywYPZl63LXcfhE4eJDIwks3Om2eGIiIicU2RkJFartdFId0lJSaNR9nNJT09n7dq17tdnGz0/3zUDAgIICAg46/c89YujYRh+90tovdbIrbZbN44tWULslCkEbdhAzN13UzptGuX33ANenEbqrZ9bh7AOvJP1Dn/95q88u+lZVh9azYgFI3h28LOM7Tq2Ve7pr/9N+mteoNx8lbdzM71L2YV2ig0KCiIzM5Pp06fz0ksvccsttzB37lxWrFjh5chbx7yddaPp47qOI8QeYnI0IiIi52a32+nSpQtbt25tcHzr1q1kZGQ0+zr79u1rMNU9PT2dr7/+utE109PTWxSveJ8RG8vx2bMpv/12LC4XUdOmEfXzn8Np/QT8idVi5Z6e9/DR+I+4Mv5KiquLmbpyKj/+9McUVRWZHZ6I+AjTC/UL7RSblpbGddddR2pqKu3bt+eGG27gyiuvZMeOHV6O3PNKqkv4MOdDAG7L0LR3ERHxDWPGjOHTTz9l5cqVHDp0iFmzZlFQUMCok/toz549m1dffdV9/tKlS9m0aRN5eXkcPHiQ2bNns3HjRv7f//t/7nOysrLYsmUL7733HocPH+a9997j66+/btRgTnxEYCAlL75IybRpGBYLYf/8J3F33IGlsNDsyFpN95juvD/2fX7W92fYLDYW713MiIUjWHVwldmhiYgPMHXqe0s6xdbbt28fO3fuZPLkyU2e05pdYE+/RkuvtXjvYqqcVWTEZHBVu6vaRNdEf+3g6K95gXLzVcrNN/lzbhdi0KBBlJWVsXDhQoqKikhNTeWJJ55wr8MrKipqMFPO4XDwj3/8g8LCQgIDA0lNTeUXv/gFffv2dZ+TkZHBQw89xJw5c5g7dy6JiYk89NBDdO/e3ev5iYdYLJRPmYKjSxdipk4laP162n3vexT+7W84unUzO7pWEWAN4JGrH2FExxE8uPpB9hTv4a6P7uK/evwXT/V/irCAMLNDFJE2ytRC/WI6xdb70Y9+RGlpKU6nk4kTJzJixIgmz/VGF1hoeSfAd5e+C8CUa6c0aLLTFvhrB0d/zQuUm69Sbr7Jn3NrrszMTDIzz95b5f7772/weuzYsYwde/71ugMGDGDAgAEeiU/ajuqRIylYvJjY7GzsOTnEf+97FP35z1TfcIPZobWaK9tdyUfjP+J/v/hf/rLtL/xjxz9Ye3gtLw99mWsTrjU7PBFpg9pEM7kL6RRbb8aMGVRVVbFr1y5mz55NYmIi11133VnPbc0usPXXa2knwJ2FO9l0eBN2i51RCaPIy8trcVye4K8dHP01L1Buvkq5+SazOsGK+DrHZZdRsGQJMffeS9AXXxB7112UzJhBRXa22aG1mhB7CNMHTmdUx1E8vOZhckpzuOWDW5jaeyqPXP0IQbYgs0MUkTbE1EK9JZ1i27dvD0DHjh0pKSlh/vz5TRbq3ugCW3+ti73enJ1zABjRcQRxwXFt7pdZf+3g6K95gXLzVcrNN/lzbiKtxRUfz/G5c4l+/HFCFywg+sknCdi1i5IZM8DeJsaSWsV1Ha7j0wmf8vT6p5m/ez6vbnmVTw9+yh+H/ZEesWff9UhELj2mNpPzVKdYwzA8MjJullpXLQv3LARgckbTa+1FRERE/EpQEMUvv0zpk0/WNZn729+Iu+suLOdZAunrIgMjeXnoy/xl5F+IDY5lR+EOshZl8fqW13G6nGaHJyJtgOld3y+0U+xHH33El19+SV5eHnl5eaxatYoPPviA66+/3qwUWmzlgZUUVBYQHxLPsNRhZocjIiIi4j0WCyemTqXozTdxhYYStHYt8TffjG3vXrMja3U3pd3EyltXcmOnG6lx1fCbTb9hwpIJ7C/db3ZoImIy0+cVXWinWMMweOeddzh69ChWq5XExETuvPNORo4caVYKLTZ311wAbu12KwHWs0/RFxEREfFnVZmZFLz3HrHZ2QR8911dR/g//5maJpY2+ot2oe14a9RbzNs1j6c3PM2mI5sYuXAkzwx8hjsy7rjkd5UQuVSZXqjDhXWKvemmm7jpppu8EZZXHKs4xqcHPgXgtnTtnS4iIiKXLscVV1CwdCmx99xD4L//Tdydd1Ly619T8V//ZXZorcpisXBbxm0MSh7Ew2seZkPeBh5f+zgf5XzEb2/4LQmhCWaHKCJeZvrU90vdwj0LcRgO+rTrQ0Zs89fli4iIiPgjV/v2FMyfT8Utt2BxOIj+xS+IfPpp8OF+RM2VGpHKvNHzmDZgGkG2IFYeXMnwBcP5YO8HDc5zupysz13PO1+/w/rc9VrXLuKHVKibyDAM5u2aB8Ck9EkmRyMiIiLSRgQHU/yHP1D6+OMAhL/5JrHZ2VhKS00OrPVZLVam9JrCR+M/old8L4qri/nRpz/iJ6t+QnF1Mcv2LaP/nP5MWDKBO969gwlLJtB/Tn+W7Vtmdugi4kEq1E20pWALO4t2EmwLZmzXsWaHIyIiItJ2WCyc+OlPKZw5E1dwMMGrVtU1mcvJMTsyr0iPSeeDsR/wUJ+HsFlsvLvnXQbPHcwPV/yQvPK8Bufml+czZcUUFesifkSFuonq906/qfNNRAWde994ERERkUtR1ejRHH/vPZyJiQTs3k38mDEEfv652WF5RYA1gMeueYz3bn6PtMg0iquLz3qegQHAtA3TNA1exE+oUDdJpaOS9797H4BJGZr2LiIiItKU2l69OLZ0KTVXXYWtqIi4yZMJmTPH7LC8pm/7vvxq0K/OeY6BQW55LhvzN3opKhFpTSrUTfJxzseU1pTSIbwD1yX797YjIiIiIi3lSkykYMECKm++GUttLTE/+xmRM2aA89IYQS6pLmnWeZuPbcYwjFaORkRamwp1k8zZVfcp8KT0SVgt+jGIiIiInFdICEWvv07pz34GQPif/0zs97+PpazM5MBaX/vQ9s067zebfkPvt3vzwxU/5K/f/JUdhTtwGa5Wjk5EPK1N7KN+qTl84jDrDq8DYFJ3TXsXERERaTaLhROPPIKja1diHnmE4E8/JX7cOApnzcKZmmp2dK2mf2J/ksKSyC/Pd69JP1OQLQgMKKwqZNm+Ze7mcjFBMQxMGsiApAEMTBrIZbGXaaBIpI1ToW6CebvmYWAwMGkgHSM7mh2OiIiIiM+pGjuWgk6diP3BDwj49lviR4+m6M03qbn2WrNDaxU2q40ZA2cwZcUULFgaFOsWLAC8OuxVRnYcyZaCLWzI3cCGvA18ceQLiqqLWJazjGU5dYV7dFA0AxIHMDC5rni/PPZyFe4ibYwKdS9zGS733umTMyabHI2IiIiI76q96iqOLVlC7Pe/T+C2bcRNmkTxCy9QOXEiOJ0EbtoENTUEBgZS3a8f2Gxmh9wiWWlZzBw5k2c+e4pu2/NJOgF54fDd5YlMGzyDrLQsAK5NuJZrE67lwT4PUuuqZcuxLXye9zkb8jawKX8TxdXFfLT/Iz7a/xFQV7j3T+zPgKQBDEoaRI/YHtisvv1vJeLrVKh72ed5n3Og7ADhAeGMThttdjgiIiIiPs2VnMzxRYuI/ulPCVm2jJiHHiL4448J3LwZW17dfuNxgDMpiZIZM6jKyjI34Ba6ZQdkv2zBftpW6o4kKI2FqrTG5wdYA7gm4RquSbiGB656gFpXLV8XfO0ecd90pK5w/3j/x3y8/2MAIgMj6Z/Yn4FJAxmYNJAr4q5Q4S7iZSrUvWzurrkA3NzlZkLsISZHIyIiIuL7jNBQiv78ZxwvvkjEH/5AyIcfNlrFbc3PJ2bKFIpmzvTZYj142TJipkyBM7q62y4gtwBrAH3b96Vv+77cf9X9OFwOvi74ms/zPmd93no25W+itKaUTw58wicHPgHqCvd+if0aFO52q8oIkdak/4V5UVlNGUv2LgHgtozbTI5GRERExI9YrZQ9+ihhf/87luLik6u2T7EYdau6ox5/HGpqwG6vmwpvtWJYLGC11n3ZbA1fn/wyzvO6wXWauG6jY01cB8uZ0QNOJ1FPPw2GcfbcLBYip02jKjPzgqb42612+rTvQ5/2ffjxlT/G4XLwzfFv2JC3gfW5pwr3FQdWsOLACgDCA8Lpl9iPQUmDGJA0gF7xvVS4i3iY/hflRR/s/YAqZxVdo7pydfurzQ5HRERExK8EbtyItbi4ye9bAFtREbH33++1mC5Go2LeYgHDwFpd3eR7LIaBPTeXwI0bqRk06KLvbbfaubLdlVzZ7kp+1PtHOF1Ovjn+Devz1vN53udszN9IaU0pKw+uZOXBlcCpwr2+QV2v+F4EWAMuOgYRUaHuVfXT3m9Lvw3L2T4pFREREZGLZjt6tFnn1Xbvjis2FlwuLC4XuFx108ldLixOZ4PX7mOnvW7wviZe43JhMQw4eT2Lq/l7mbvf53TWvb6Af4OglSup7dMHI8QzSyxtVhu92/Wmd7ve7sJ9R+EO1uetZ0PeBjbmbaSkpqRB4R4WEMa1Cde6t4S7st2VzSrcnS4nm45soqaghsCaQPol9NPaeLlkqVD3kj3Fe/jyyJfYLDYmpE8wOxwRERERv+Ns375Z55U8+2yLRp0v2unFvtNZV5CfXtyf5Vj9BwABX35J7AMPnPcWEW+8Qfhbb1E9YADVQ4dSPWwYjm7dzj6d/iLYrDZ6xvekZ3xPpvSaUle4F+1gQ+4GPs/7nM/zP6e4upjVh1az+tBqAELtoVybcG3dPu7JA7ky/koCbYENrrts3zKe3vA0eeWnuuQlhSUxY+CpbvYilxIV6l5SvyXb0JShJIQmmByNiIiIiP+p6d8fZ1IS1vz8uoL3DIbFgjMpiZr+/U2Ijrpi2War+woIaNTwDjjrMQBncjLO3/ym6dyoa6rnio7GnptL8Jo1BK9ZA9On40hJcRft1YMHY0REeCwlm9VGz7ie9IzryQ97/RCX4eLbwm/ZkFfXVf7zvM8pqi5izeE1rDm8BoAQewjXJFzjbk6XX57P1JVTG+wND5Bfns+UFVOYOXKminW55KhQ9wKHy8GC3QsANZETERERaTU2GyUzZhAzZQqGxdKgoDVOjiiXTp/um/upNyO34ldeoeqmm7Dv2UPQqlUErV5N0OefYz90CPvbbxP29tsYdjs1115L9bBhVA0diuPyyz022g5gtVi5PO5yLo+7nHt63oPLcLGzaGfddnD5dYV7YVUhaw+vZe3htee8loGBBQvTNkwjs1OmpsHLJUWFuhesPrSaIxVHiA2OZVTHUWaHIyIiIuK3qrKyKJo5k6inn3bvow51+6iXTp/us1uzQfNzc3TvjqN7d8qnTMFSUUHghg0ErV5N8KpV2PftI2jDBoI2bCDy2WdxJiRQPXQoVUOHUn399RgxMR6N2Wqx0iO2Bz1ie/CDnj/AZbjYXbS7rqt83nrWHlpLaW1pk+83MMgtz+XPW/9MVpcsUsJT1GFeLgn6r9wL6pvIje82vtF6HBERERHxrKqsLKoyMwnatIm4mhqOBwZS3a+fb46kn+FCczNCQ6keMYLqESMoBWw5Oe6iPfCzz7AdOULo3LmEzp2LYbVS26cPVcOGUT1sGLW9e9d1nvcgq8VKRmwGGbEZZF+RzaI9i3hg1fnX3v/mi9/wmy9+g91iJyUihc6RnekU2YnOkZ3dX6kRqYTYPdNET8RsKtRbWWFVIZ/s/wSo6/YuIiIiIl5gs9U1jEtKoiYvr66Rm79oQW7Ozp2pyM6mIjsbqqsJ3LiR4NWrCVq9moCdOwn86isCv/oKfvtbnLGxVA8ZUre2fcgQXPHxHk+lub2bUsNTOVZ5jCpnFTmlOeSU5pz1vKSwpAbFe6fITqRFptEpshMRgZ5bmy/S2lSot7J397xLrauWXvG9uCLuCrPDERERERGpExREzQ03UHPDDfD001gPH3YX7UFr12IrLCR00SJCFy0CoKZ377qifdgwavr0AXvLS4n+if1JCksivzy/UTM5AAsWksKS+Oy2z7BYLBypOEJOaQ77S/ezr3QfOSU57C/bT05JDmW1ZeSV55FXnseGvA2NrhUXHNdoFL6+kI8NjtX2ydKmqFBvZXN3nto7XURERESkrXJ16EDFnXdSceedUFtL4L//TdDKlQStXk3gtm0Ebt1K4NatRLzyCq7ISKqvv56q4cPrRtuTki7qnjarjRkDZzBlxRQsWBoU65aTO8hPHzjd3UguKSyJpLAkBiYNbHAdwzAoqi5iX8k+d+G+r3Qf+0v3k1Oaw/Gq4+6vfx/9d6M4IgIizlrEd47sTGJYIlZLy5YAaI94uVAq1FvRtoJtbC/cTqA1kHFdx5kdjoiIiIhI8wQEUNO/PzX9+1P2xBNYjx4laM0aglatInjNGqzFxYQsXUrI0qUA1PboUdeUbtgwaq69FgKb35cpKy2LmSNnnnUf9ekDpzdrazaLxUJscCyxwbFcnXB1o++X1ZS5i/YGI/KlOeSV51FWW8a249vYdnxbo/cG24LpGNHxVCEf1ZnOEXV/dgjvQIA14JyxaY94uRgq1FvRnJ1zAMjsnElMsGc7aIqIiIiIeIurfXsqJ06kcuJEcDoJ2LKlrindypUEbN5MwI4dBOzYQfgbb+AKC6N68GD3NHlnaup5r5+VlkVmp8y6UedAz486RwRG0DO+Jz3jezb6XqWjkoNlBxsU8fV/P1h2kCpnFbuKd7GreFej99osNlIjUukU0YnOUZ3pFNGJtKg0OkV0omNkR1YdXMWUFVO0R7xcMBXqraTaWc2i7+rW82jau4iIiIj4DZuN2r59qe3blxOPPIKlsJCgtWsJXrmSoDVrsB07Rsjy5YQsXw5AbdeuVA8dSvXw4VT37w8hZ+/MbjNgaA7E1cDxQKhu7510QuwhpMekkx6T3uh7ta5aDp847B6Bry/i95fuZ3/p/gbN7dYcXtPo/VaL9axr77VHvJyPCvVWsnz/coqri0kMS+SGDjeYHY6IiIiISKswYmOpGjuWqrFjweXCvn07watW1a1t/+ILAr77joDvviP8zTcxgoOpHjjQPU3e2aULWCwEL1vWYH/4OOr2hy+ZMcO9P7wZAqwB7jXrQxjS4Hsuw0V+eb57TXxOWU6j5nYuw9Xktev3iL9h/g10iepCUlgSiaGJJIbVfSWEJpAUlkRMUIwa3V2CVKi3kvomchO7T9QnZCIiIiJyabBacfTsyYmePTnxk59gKS0laN069zR5W14ewatWEbxqFVHTpuHo2BFHWhpBa84yGp2fT8yUKRTNnGlqsd4Uq8VKcngyyeHJZ21u989v/8nP1/38vNc513ZzAEG2IBJCE0gITagr4uuL+TOKerP2kFejvNahQr0V5JXnuae+TEqfZHI0IiIiIiLmMCIjqcrKoiorixLDwL5rV11DutWrCdy4EfuBA9gPHDjrey1G3aTxqF/+kqohQyAszLvBt4DFYqFLVJdmnfvEtU8QExxDfnk+RyqOkFeeR355PvkV+RRWFVLtrOZA2QEOlJ3936ledFB0oyK+vrivH62PC4lrcQf706lRXutRod4KFuxegMtw0S+hX7P/ByoiIiIi4tcsFhwZGTgyMij/0Y+wVFQQ+pe/EPX8802/BbAdOUJyejqu0FBccXG4YmPrvmJiTv39bF8xMR7Z6/1inb5HvMVlcP1+SDoBeeGwthMY1ro94n/c+8dNjkBXO6s5WnGU/PJ88srzOFJxhPyK/LpC/mQxn1+eT5WziuLqYoqri/m26NsmY7Jb7LQPbe8eiU8KTTo1Un9agR8WcP4PRZbtW6ZGea1IhbqHGYbh7vY+OWOyydGIiIiIiLRNRmgoro4dm32+taICa0UFHDzY7Pe4oqKaLOSdZyn4jagosHpmxLl+j/gP//BDXv4IUktPfe9gJDz0/wxuenD6OaeJB9mCSI1IJTWi6c75hmFQUlPiLt7do/IVp17nl+dzrPIYDsNBbnkuueW554w9IiCiQfGeEJZAUmiS+1h8cDxPb3hajfJakQp1D/viyBfklOYQag9lTJcxZocjIiIiItJmOds3r7X78b/9DUe3blgLCxt+FRVhPX688fHiYiyGgbWkBGtJCezb16z7GFZrXeF+ASP3RlgYNNHs7ZYdcM88GpWzHUphwTwoGgVVac0KrUkWi4XooGiig6K5LPayJs+rddVytOKou3CvH5F3j9SffF1eW05ZbRllxWXsLt59UTHVN8qbt3sew1OHExsce9795qUhFeoeVt9EbkyXMc2aMiIiIiIicqmq6d8fZ1IS1vx8LMZZRmctFpxJSVQPGwY2G87OnZt3Yaezrkg/s4A/s6gvKjr197IyLC4XtuPHsR0/3uwcjMDAsxfx0dGEvfUWAGeO0VtP5hY5bRpVmZlga/1R5wBrAB3CO9AhvMM5zyurKWu0Vv5I+akp93kVeRwpP3LW0fQzPfqvR91/jwqMIjY4lriQuLo/g+OIC45zH3P/PTiOuJA405rjnc7MRnkq1D2ovLacxXsXAzA5XdPeRURERETOyWajZMYMYqZMwbBYGhTrxslR6tLp0y+8kLXZ3AVzs9XUNCzc6wv7M4+d/LIVFmKpqsJSU4MtPx9bfv4FhWgxDOy5ubQbORJnx4510/Sjo3FFR2PU//3kn8bJ466oKAho3ZHpiMAIIgIj6Bbdrclz1h1ex23LbgPA6qLR+nvXyU8mIgIiOFF7AoO66fklNSXsK23e7IYQe0iD4v1sBX1syKmCPzIw0qPb2JndKE+Fugct2buECkcFnSM70y+xn9nhiIiIiIi0eVVZWRTNnNlgH3Wo20e9dPp0723NFhiIKyEBV0JCs99iqaxscrQ+4KuvCF637rzXCNi1i4Bdu5p9T1dYGK6oqFPF/LmK+9OOGZGRHlt/PzBpIElhSQz8Iq+J9ffw+bXJfD75cwBKako4Xnmc41V1X4VVhRyvPPnnyWPHK49TWF1IYWUhNa4aKh2VHDpxiEMnDjUrJrvF3uSI/ekFff2xmOAY7Nazl8NtoVGeCnUPmrurbtr7pPRJHv00R0RERETEn1VlZVGVmUnQpk3E1dRwPDCQ6n79vDIlvCWMkBCcHTrg7NB4Onng+vXNKtRLH30UV0IClpISrMXFdV8n/+4+Vr/WHrCWl2MtL4fcczeEaxSrxdK4mI+KajCS31TBb4SENFiHb7Pa+HvNOIbPe6PRfTqUwvx5sPLKse5p4rHBscQGx9Kd7ueP0zA4UXviVPFeVdiooD9edZyiqiL3sfLachyGg6OVRzlaebRZ/x4WLEQFRZ0q4E8W+NFB0fxjxz9Mb5SnQt1D9hTu4fO8z7FgYWL3iWaHIyIiIiLiW2w2agYNgqQkavLy4Cxr1n1Jc9ffn3jwweZ9IOF0YiktdRfx1pISLPWF/ZnF/WlFv6W4GGtlJRbDcJ9/oYyAgFMj89HRuCIjGb5hAxbqttA7nZW65nlDX3ufo//1xAV/2GKxWNzT7ztHdm7We6ocVe6RendRX3m84bHTRvSLq4sxMNxb2n1X8l2z46tvlLcxfyODkgddUG4XQoW6h8zaPAuAISlDSA5PNjcYERERERExl6fX39tsGDExOGNicF5oLNXV7lF5yxmF/dmOnT6Sb6mtxVJbi+3YMWzHjjXrdhbAnptLwpVX4uzQAVe7drjatcN58k/339u3xxkfjxEd3WTn/OYItgc3q1FePYfLQVFVUcOR+qrjFFYW8sWRL/jX4X+d9xpHK5o3cn+xVKi3kNPl5PO8z3njy7ppHxO6TzA5IhERERERaQvazPr7oCBc7dvjauZ2eG6GgaWioq6QP614D1q1irB//vO8b7cVFWErKjr/bQICcMXH42zf/tSfZxT39X8aEREtKuoB7FY77ULb0S60XaPvrc9d7y7Uz9Uor33oBf5bXmiMrXp1P3e2ToC/3vhrgmxBXukEKCIi0lZ8/PHHLF68mOLiYlJSUsjOzqZHjx5nPXfjxo0sX76cnJwcHA4HKSkpTJw4kauuusp9zurVq3n99dcbvfftt98mMDCwtdIQEfE4X11/D4DFghEWhhEWhuu0dfiuqKhmFerFzz+PMzkZ68nReOvRo1gLCrDV/3nsWN0Ifm0ttry8Bh9mNMUIDsYZH19XvJ8s7OtH5l0nC3x3UR924dtl90/s36xGef0T+1/wtS+ECvWL1FQnwCMVR7zWCVBERKQtWL9+PbNmzeLee+8lIyODFStW8Oyzz/LSSy8RHx/f6PwdO3bQu3dvbr/9dsLCwli1ahXPP/88zz77LGlpae7zQkJCeOWVVxq8V0W6iPikS3T9fcXtt5//A4nq6lNFe31BX//3Mwp7a1kZlqoq7IcOwaHzd4N3hYbWFe9njtafUdw74+MhpG7f9gttlNdaVKhfBKfLydMbnja9E6CIiEhbsGTJEoYPH86IESMAyM7OZsuWLSxfvpw77rij0fnZ2dkNXt9xxx18+eWXfPXVVw0KdYvFQnR0dLPjqK2tpba2tsH7Q07+4tXS3Vjq3++Pu7ooN9/kr7n5a17gZ7nZ7ZT+6ldE//CHTa6/L5sxA4u9GeVmcDBGSgqOlJTzn1tZia2goG5k/ujRU3+vL+bri/yjR7FWVmKtqMCakwM5Oee9tCsiom40Pj6e4Vu3nrNR3rDX3ufo3f/TqrMiVKhfhI35GxtMdz+TtzoBioiImM3hcLB3717GjRvX4Hjv3r3ZuXNns67hcrmorKwkPDy8wfGqqiqmTp2Ky+Wic+fO3HbbbQ0K+TMtWrSIBQsWuF+npaXx/PPP065d4zWIFysxMdFj12prlJtv8tfc/DUv8KPc7rkHYmLgpz9tMLptSUmBl18m5pZbWue+Xbo077wTJyA/H44cafjn2Y5VV2MtK8NaVoZ9795zXtYC2HJzSdqzB4YObXE6TVGhfhGa2+GvtTsBioiImK20tBSXy0VUVFSD41FRURQ3cwugJUuWUF1dzcCBA93HkpOTmTp1Kh07dqSyspJly5bx1FNP8eKLL5KUlHTW64wfP54xY8a4X9ePWh07dgyHw3GBmTVksVhITEwkPz8fw8enrJ5Jufkmf83NX/MCP81t4EDYsIGgTZuIra6mMCjo1Pr7Zqw3b3VhYXWF/bmKe8PAUlbmHqEPWrqU8DffPO+li7Zvpyoj44LCsdvtzf7wWIX6RWhuh7/W7gQoIiLSVpxtKmdzpneuW7eO+fPn89hjjzUo9tPT00lPT3e/zsjI4Oc//zkffvghP/jBD856rYCAAAICAs76PU/9UmwYhv/8gn0G5eab/DU3f80L/DA3q5XqgQMhKYnqvLy63HwsPyMiAldEBI6uXTGczmYV6s727Vv152httSv7sfpOgJZGqxbqWLCQHNb6nQBFRETMFhkZidVqbTR6XlJS0miU/Uzr16/nT3/6Ew8//DC9e/c+57lWq5WuXbuSn5/f0pBFRESaVN8oz2jiw2bDYsGRnExN/9at9VSoXwSb1caMgTMAGhXr9a+nD5yuRnIiIuL37HY7Xbp0YevWrQ2Ob926lYxzTAlct24dr732Gg8++CB9+/Y9730Mw2D//v0X1FxORETkgtlslMyoq/XOLNbrX5dOn97q2+upUL9IWWlZzBw5k8Swhs0gksKStDWbiIhcUsaMGcOnn37KypUrOXToELNmzaKgoIBRo0YBMHv2bF599VX3+fVF+t133016ejrFxcUUFxdTUVHhPmf+/Pls3ryZI0eOkJOTwxtvvEFOTg433nij1/MTEZFLS1VWFkUzZ+I6o/GfMymJopkzqcpq/VqvTaxR//jjj1m8eDHFxcWkpKSQnZ1Njx49znruxo0bWb58OTk5OTgcDlJSUpg4cSJXXXWVd4OmrljP7JTJpiObqAmsIbAmkH4J/TSSLiIil5RBgwZRVlbGwoULKSoqIjU1lSeeeMLdMKeoqIiCggL3+StWrMDpdPLmm2/y5mnrAIcMGcL9998PQHl5OTNnzqS4uJjQ0FDS0tKYPn063bp1825yIiJySarKyqIqM5OgTZuIq6nheGDgqUZ5XmB6ob5+/XpmzZrFvffeS0ZGBitWrODZZ5/lpZdeIj4+vtH5O3bsoHfv3tx+++2EhYWxatUqnn/+eZ599tlzbtnSWmxWG4OSB5GUlEReffMEERGRS0xmZiaZmZln/V598V3vmWeeOe/1srOzG+23LiIi4lU2GzWDBkFSEjV5eV5tkmd6ob5kyRKGDx/OiBEjgLoH85YtW1i+fDl33HFHo/PPfGjfcccdfPnll3z11VdNFuq1tbXU1ta6X1ssFkJCQtx/b6n6a3jiWm2Nv+bmr3mBcvNVys03+XNuIiIiYh5TC3WHw8HevXsZN25cg+O9e/dm586dzbqGy+WisrKS8PDwJs9ZtGgRCxYscL9OS0vj+eefb/Yeds2VeMYaBn/ir7n5a16g3HyVcvNN/pybiIiIeJ+phXppaSkul6vR9i1RUVGNtnlpypIlS6iurmbgwIFNnjN+/HjGjBnjfl0/8nHs2DEcDseFB34Gi8VCYmIi+fn5fjf13V9z89e8QLn5KuXmmzyZm91u9/gHyCIiIuKbTJ/6DmefMticaYTr1q1j/vz5PPbYY+fcqzUgIICAgICzfs+TvzQahuF3v4TW89fc/DUvUG6+Srn5Jn/OTURERLzP1O3ZIiMjsVqtjUbPS0pKzll4Q10Tuj/96U88/PDD9O7duxWjFBEREREREfEeUwt1u91Oly5d2Lp1a4PjW7duJSMjo8n31e+/+uCDD9K3b9/WDlNERERERETEa0wt1AHGjBnDp59+ysqVKzl06BCzZs2ioKCAUaNGATB79mxeffVV9/n1Rfrdd99Neno6xcXFFBcXU1FRYVYKIiIiIiIiIh5j+hr1QYMGUVZWxsKFCykqKiI1NZUnnnjC3VCnqKiIgoIC9/krVqzA6XTy5ptv8uabb7qPDxkypNE+rSIiIiIiIiK+xvRCHSAzM5PMzMyzfu/M4vuZZ57xQkQiIiIiIiIi5jB96ruIiIiIiIiInKJCXURERERERKQNUaEuIiIiIiIi0oaoUBcRERERERFpQ9pEMzmz2O2eTd/T12tL/DU3f80LlJuvUm6+yRO5+fO/j9k8+W/rzz8n5eab/DU3f80LlJuv8vaz3mIYhtHiO4qIiIiIiIiIR2jquwdUVlby85//nMrKSrND8Th/zc1f8wLl5quUm2/y59ykIX/+WSs33+SvuflrXqDcfJVZualQ9wDDMNi3bx/+ODnBX3Pz17xAufkq5eab/Dk3aciff9bKzTf5a27+mhcoN19lVm4q1EVERERERETaEBXqIiIiIiIiIm2ICnUPCAgIYMKECQQEBJgdisf5a27+mhcoN1+l3HyTP+cmDfnzz1q5+SZ/zc1f8wLl5qvMyk1d30VERERERETaEI2oi4iIiIiIiLQhKtRFRERERERE2hAV6iIiIiIiIiJtiAp1ERERERERkTbEbnYAvmz79u0sXryYffv2UVRUxKOPPkq/fv3MDqvFFi1axKZNmzh8+DCBgYGkp6dz1113kZycbHZoLbZ8+XKWL1/OsWPHAEhJSWHChAn06dPH5Mg8b9GiRbzzzjtkZWWRnZ1tdjgtMm/ePBYsWNDgWFRUFP/3f/9nUkSeVVhYyNtvv83mzZupqakhKSmJH//4x3Tp0sXs0Frk/vvvd/9v7XQ33ngj9957rwkReYbT6WT+/PmsXbuW4uJiYmJiGDp0KLfccgtWqz7/9jd61vsePet9k571vslfn/Vg/vNehXoLVFdX07lzZ4YNG8bvfvc7s8PxmO3bt5OZmUnXrl1xOp3MmTOHX//61/z+978nODjY7PBaJDY2ljvuuIPExEQA1qxZwwsvvMALL7xAamqqydF5zp49e1ixYgWdOnUyOxSPSU1N5amnnnK/9peC6MSJEzz11FNcccUV/M///A+RkZEcOXKE0NBQs0Nrseeeew6Xy+V+feDAAX79618zcOBAE6Nquffff59PPvmE+++/n5SUFPbu3cvrr79OaGgoWVlZZocnHqZnve/Rs9536Vnve/z1WQ/mP+9VqLdAnz59/PLT2SeffLLB66lTp3Lvvfeyd+9eLr/8cpOi8oxrrrmmwevbb7+d5cuXs3v3br95eFdVVfHHP/6R++67j3fffdfscDzGarUSHR1tdhge9/777xMXF8fUqVPdx9q3b29iRJ4TGRnZ4PV7771HQkKCz///yK5du7jmmmvo27cvUPfzWrduHd99953JkUlr0LPe9+hZ77v0rPc9/vqsB/Of9/7xMZW0qoqKCgDCw8NNjsSzXC4Xn332GdXV1aSnp5sdjsf85S9/oU+fPvTu3dvsUDwqPz+f++67j/vvv5+XX36ZI0eOmB2SR3z55Zd06dKF3//+99x77708/vjjrFixwuywPM7hcLB27VqGDRuGxWIxO5wWueyyy9i2bRu5ubkA5OTksHPnTr8s5uTSoWe9b9Gz3rfoWe+bzH7ea0RdzskwDP72t79x2WWX0bFjR7PD8YgDBw7w5JNPUltbS3BwMI8++igpKSlmh+URn332Gfv27eO5554zOxSP6t69O/fffz/JyckUFxfz7rvv8stf/pLf//73REREmB1eixw9epRPPvmE0aNHM378ePbs2cNf//pXAgICGDJkiNnhecymTZsoLy9n6NChZofSYmPHjqWiooKHH34Yq9WKy+Vi8uTJXHfddWaHJnJR9Kz3LXrW+x49632T2c97FepyTm+++SYHDhxgxowZZofiMcnJybz44ouUl5ezceNGXnvtNaZPn+7zD/CCggJmzZrFk08+SWBgoNnheNTpn1x27NiR9PR0fvKTn7BmzRrGjBljYmQt53K56Nq1K3fccQcAaWlpHDx4kOXLl/vVw3vVqlVcddVVxMbGmh1Ki61fv561a9fy4IMPkpqaSk5ODrNmzXI3mRHxNXrW+w49632TnvW+yeznvQp1adJbb73FV199xfTp04mLizM7HI+x2+3uBjNdu3blu+++Y9myZUyZMsXkyFpm7969lJSU8Itf/MJ9zOVysWPHDj766CNmz57tN01ZgoOD6dixI3l5eWaH0mIxMTGNfnFMSUlh48aNJkXkeceOHWPr1q08+uijZofiEW+//TZjx45l8ODBQN0vlMeOHeO9995ToS4+R89636JnvW/Ss943mf28V6EujRiGwVtvvcWmTZt45pln/KbZRVMMw6C2ttbsMFqsV69e/Pa3v21w7I033iA5OZmxY8f6zYMboLa2lsOHD9OjRw+zQ2mxjIwM99qnerm5ubRr186kiDxv1apVREVFuZux+Lrq6upG/3uyWq0YhmFSRCIXTs9636RnvW/Ss943mf28V6HeAlVVVeTn57tfHz16lJycHMLDw4mPjzcxspZ58803WbduHY8//jghISEUFxcDEBoa6vPTrGbPnk2fPn2Ii4ujqqqKzz77jG+++aZR91tfFBIS0mhtYVBQEBERET6/5vDvf/8711xzDfHx8ZSUlLBw4UIqKyv9YrrY6NGjeeqpp3j33XcZNGgQe/bs4dNPP/X5UZ96LpeL1atXM2TIEGw2m9nheMTVV1/Nu+++S3x8PCkpKeTk5LBkyRKGDRtmdmjSCvSs9z161vsmPet9lz8+68H8573F0BDARfvmm2+YPn16o+NDhgzh/vvvNyEiz5g0adJZj0+dOtXnp3W+8cYbbNu2jaKiIkJDQ+nUqRNjx471u66p9Z555hk6d+5Mdna22aG0yMsvv8yOHTsoLS0lMjKS7t27M3nyZJ9fa1jvq6++Yvbs2eTn59O+fXtGjx7NyJEjzQ7LI7Zs2cJvfvMbXn75ZZKTk80OxyMqKyuZO3cumzZtoqSkhNjYWAYPHsyECROw2/X5t7/Rs9736Fnvm/Ss913++KwH85/3KtRFRERERERE2hD/WcgiIiIiIiIi4gdUqIuIiIiIiIi0ISrURURERERERNoQFeoiIiIiIiIibYgKdREREREREZE2RIW6iIiIiIiISBuiQl1ERERERESkDVGhLiIiIiIiItKG2M0OQEQ8b/Xq1bz++utNfn/atGlcccUVXozolKNHj/LAAw9w1113cfPNN5sSg4iIiK/Ts17Ev6lQF/FjU6dOJTk5udHxlJQUE6IRERERT9OzXsQ/qVAX8WOpqal07drV7DBERESklehZL+KfVKiLXMImTZpEZmYmHTt2ZMmSJRw7doyEhAQmTJjA4MGDG5x74MAB5syZw44dO6ipqSE5OZnRo0czdOjQBueVl5ezcOFCNm3aRGFhIaGhoXTt2pW7776bDh06NDh3yZIlfPjhh5SWltKxY0f++7//m/T0dPf3jxw5wjvvvMOOHTsoKysjLCyM1NRU7r77bjp37txa/ywiIiJ+Q896Ed+kQl3Ej7lcLpxOZ4NjFosFq/VUH8kvv/ySb775hkmTJhEUFMTy5ct55ZVXsNlsDBgwAIDc3FyeeuopIiMj+f73v094eDhr167l9ddfp6SkhLFjxwJQWVnJ008/zdGjRxk7dizdu3enqqqKHTt2UFRU1ODh/fHHH9OhQweys7MBmDt3Ls899xyvvfYaoaGhADz33HO4XC7uvPNO4uPjKSsrY+fOnZSXl7fmP5uIiIjP0LNexD+pUBfxY08++WSjY1arlTlz5rhfl5WV8dxzzxEdHQ1A3759+dnPfsbs2bPdD+958+bhcDiYNm0a8fHx7vMqKipYsGABo0aNIjQ0lKVLl3Lw4EF++ctf0rt3b/c9+vfv3yiOkJAQfvGLX7h/kYiJieF//ud/+M9//sPgwYMpKysjNzeX7OxsbrjhhnNeS0RE5FKlZ72If1KhLuLHHnjggUZT0CwWS4PXPXv2dD+4oe7hPnDgQBYsWMDx48eJi4vjm2++oWfPnu4Hd70hQ4bwn//8h127dnHVVVexefNmkpKSGjy4m9K3b98Gn/Z36tQJgGPHjgEQHh5OQkICixcvxuVyccUVV9CpU6cG7xEREbnU6Vkv4p9UqIv4sQ4dOpy3wczpD+4zj5WVlREXF0dZWRkxMTGNzouNjXWfB1BaWtroAd+U8PDwBq8DAgIAqKmpAep+yXj66adZsGAB77//Pn//+98JDw/nuuuu4/bbbyckJKRZ9xEREfFnetaL+CcV6iKXuOLi4iaPRUREuP8sKipqdF5hYWGD8yIjIzl+/LjHYmvXrh0//vGPgbq1cxs2bGD+/Pk4HA6mTJnisfuIiIj4Mz3rRXyP5pWIXOK2bdvW4AHucrnYsGEDCQkJxMXFAXVT5rZt2+Z+WNf717/+RVBQkLt761VXXUVeXh7btm3zeJzJycnceuutdOzYkX379nn8+iIiIv5Kz3oR36MRdRE/dvDgwUadYAESExOJjIwE6j4hnzFjBrfeequ7E+zhw4d56KGH3OdPnDiRf//730yfPp0JEya4O8H++9//5q677nJ3bh09ejQbNmzghRdeYNy4cXTr1o2amhq2b99O37596dmzZ7Nj379/P2+99RYDBgwgKSkJu93Otm3b2L9/P+PGjWvRv4uIiIi/0LNexD+pUBfxY6+//vpZj993332MGDECgGuuuYbU1FTmzJlDQUEBiYmJPPjggwwaNMh9fnJyMr/61a945513ePPNN6mpqaFDhw5MnTq1wd6qISEhzJgxg/nz57NixQrmz59PeHg4Xbt2ZeTIkRcUe3R0NAkJCSxfvpyCggIsFgsJCQncfffd3HTTTRf+jyEiIuKH9KwX8U8WwzAMs4MQEXNMmjSJzMxM7rnnHrNDERERkVagZ72Ib9IadREREREREZE2RIW6iIiIiIiISBuiqe8iIiIiIiIibYhG1EVERERERETaEBXqIiIiIiIiIm2ICnURERERERGRNkSFuoiIiIiIiEgbokJdREREREREpA1RoS4iIiIiIiLShqhQFxEREREREWlDVKiLiIiIiIiItCH/H7r+9VScJ/unAAAAAElFTkSuQmCC", "text/plain": [ "