
The Introduction To 
Artificial Intelligence

Yuni Zeng yunizeng@zstu.edu.cn
2022-2023-1  

1



The Introduction to Artificial Intelligence

• Part I Brief Introduction to AI & Different AI tribes
• Part II Knowledge Representation & Reasoning
• Part III AI GAMES and Searching
• Part IV Model Evaluation and Selection
• Part V Machine Learning

2



3

Machine Learning

Supervised 
learning

Unsupervised 
learning

Reinforcement 
learning



Introduction to Reinforcement learning

• Reinforcement learning

• Q-Learning

4



5

Reinforcement learning

p Reinforcement Learning

n “AI=RL” by David Silver

nAgent-oriented learning—learning 
by interacting with an environment 
to achieve a goal

nLearning by trial and error, with only 
delayed evaluative feedback (reward)



6

1. Different ML methods

p Reinforcement Learning -- example



1. Different ML methods

p Reinforcement Learning -- example



1. Different ML methods

p Reinforcement Learning -- example



9

1. Different ML methods

p Reinforcement Learning

n Game Pong n Game Breakout



10

1. Different ML methods

p Reinforcement Learning

Game Breakout

player

joystick

Breakout

screen

Score

① ②

③

④

⑤

environment

reward 𝑟

① ②

③

④

state 𝑠 action 𝑎

agent

⑤
n Rules are unknown
n Learn directly from the interaction

At each time step t:
① Agent receives state 𝒔(𝒕)
② Agent executes an action 𝒂(𝒕) by 

his action policy 𝝅(𝑠(𝑡))
③ Environment emits a immediate 

reward 𝒓(𝒕 + 𝟏) to agent
④ Environment changes its state to 

𝒔(𝒕 + 𝟏)
⑤ Agent improves his policy 𝝅(𝒔)

according to the reward.

,< 𝑠, 𝑎, 𝑟, 𝑠! >
𝑠 ← 𝑠!Reinforcement Learning



11

Reinforcement learning

nRL problem can be described as a Markov decision process
nThe future is independent of the past given the present

nOne episode of this process forms a finite sequence : 

𝑠 0 , 𝑎 0 , 𝑟 1 , 𝑠 1 , 𝑎 1 , 𝑟 2 ,⋯⋯ , 𝑠 𝑛 − 1 ,
𝑎(𝑛 − 1), 𝑟(𝑛), 𝑠(𝑛)

-< 𝑠, 𝑎, 𝑟, 𝑠3 >
𝑠 ← 𝑠3

n The agent are always trying to get the maximum rewards 
through policy 𝜋(𝑠)

Question: How to define the maximum reward ?
environment

reward 𝒓

① ②

③

④

state 𝒔 action 𝒂

agent

⑤



12

Reinforcement learning

One episode of this process forms a finite sequence of states, actions, and rewards:

𝑠(0), 𝑎(0), 𝑟(1), 𝑠(1), 𝑎(1), 𝑟(2),⋯⋯ , 𝑠(𝑛 − 1), 𝑎(𝑛 − 1), 𝑟(𝑛), 𝑠(𝑛)

Question: How can agent get the maximum reward ?

nTotal reward of one episode:

𝑅 = 𝑟(1) + 𝑟(2) + 𝑟(3) + ⋯⋯𝑟(𝑛 − 1) + 𝑟(𝑛)

nTotal future reward from time step 𝑡 :

𝑅(𝑡)

= 𝑟(𝑡) + 𝑟(𝑡 + 1) + 𝑟(𝑡 + 2) + ⋯⋯𝑟(𝑛 − 1) + 𝑟(𝑛)

nDiscounted future reward reward from time step 𝑡 :

𝑅(𝑡) = 𝑟(𝑡) + 𝛾𝑟(𝑡 + 1) + 𝛾4𝑟(𝑡 + 2) + ⋯⋯+ 𝛾567𝑟8

environment

reward 𝒓

① ②

③

④

state 
𝒔

action 𝒂

agent

⑤



13

Reinforcement learning

Question: How can agent get the maximum reward ?

At each time step, a good strategy for an agent would be to 
always choose an action that maximizes the (discounted) future 
reward.

𝑅 𝑡
= 𝑟 𝑡 + 𝛾𝑟 𝑡 + 1 + 𝛾4𝑟 𝑡 + 2 +⋯⋯+ 𝛾567𝑟8 𝑡
= 𝑟(𝑡) + 𝛾𝑅(𝑡 + 1)

𝑅 = 𝑟(1) + 𝑟(2) + 𝑟(3) + ⋯⋯𝑟(𝑛 − 1) + 𝑟(𝑛)
𝑅 𝑡 = 𝑟 1 + 𝑟 2 + 𝑟 3 +⋯𝑟 𝑡 − 1 + 𝑅(𝑡)

past reward future reward



Introduction to Reinforcement learning

• Reinforcement learning

• Q-Learning

14



15

Q-Learning

nQ function represents the “quality” of a certain action in a 
given state.

nIt is a table of states and actions.

𝑄(𝑠 𝑡 , 𝑎(𝑡)) = 𝑚𝑎𝑥𝑅(𝑡 + 1)

𝜋(𝑠(𝑡)) = max
!
𝑄(𝑠(𝑡), 𝑎)

choose an action that maximizes the future reward.

Q-table

𝑄 𝑠, 𝑎 𝒂𝟏 𝒂𝟐 ⋯ 𝒂𝒎

𝒔𝟏

𝒔𝟐

𝒔𝟑

⋮

𝒔𝒏



16

Q-Learning

nBellman equation :

𝑄(𝑠 𝑡 , 𝑎(𝑡)) = max𝑅(𝑡 + 1)

𝑄 𝑠 𝑡 , 𝑎 𝑡 = 𝑟 𝑡 + 1 + 𝛾max𝑅(𝑡 + 2)

𝑄 𝑠 𝑡 , 𝑎 𝑡 = 𝑟 𝑡 + 1 + 𝛾 max
9 7:;

𝑄 𝑠 𝑡 + 1 , 𝑎 𝑡 + 1

𝑄 s, 𝑎 = 𝑟 + 𝛾max
9!

𝑄(𝑠3, 𝑎3)

𝑅(𝑡 + 1) = 𝑟(𝑡 + 1) + 𝛾𝑅(𝑡 + 2)

current reward maximum future 
reward from 
next state

< 𝑠(𝑡), 𝑎(𝑡), 𝑟(𝑡 + 1), 𝑠(𝑡 + 1) >

𝑠

𝑠!

𝑎 𝑟

𝑎& 𝑎' 𝑎(

𝑄(𝑠), 𝑎&) 𝑄(𝑠), 𝑎') 𝑄(𝑠), 𝑎()

⋯

⋯



17

Q-Learning

Q-table

1. Algorithm Q-Learning
2. Input:

1. 𝑆 is a set of states
2. 𝐴 is a set of actions
3. 𝛾 is the discount

3. initialize 𝑄[𝑆, 𝐴] arbitrarily
4. observe initial state 𝑠
5. Repeat:

1. select and carry out an action 𝑎, randomly
2. receive reward 𝑟
3. observe new state 𝑠3
4. If 𝑠3 is terminal state:

1. 𝑄 𝑠, 𝑎 = 𝑟
5. Else: 

1. 𝑄 𝑠, 𝑎 = 𝑟 + 𝛾max
9!

𝑄[𝑠3, 𝑎3]
6. 𝑠 ← 𝑠3 

6. Until terminated

𝑄 𝑠, 𝑎 𝒂𝟏 𝒂𝟐 ⋯ 𝒂𝒎
𝒔𝟏
𝒔𝟐
𝒔𝟑
⋮

𝒔𝒏

-< 𝑠, 𝑎, 𝑟, 𝑠3 >
𝑠 ← 𝑠3



18

Q-Learning

A tiny example:
Game description
States:
𝑠;, 𝑠4, 𝑠<, where 𝑠< is terminal state 
Actions:
𝑎; denotes up. The agent goes up 
and moves to terminal state. 
𝑎4 denotes left. The agent moves to 
left in state 𝑠4 with a reward −0.2, 
while stay still in state 𝑠; with a 
reward −0.1.
𝑎< denotes right. The agent moves to 
right in state 𝑠; with a reward 0.2, 
while stay still in state 𝑠4 with a 
reward −0.1.

Move up/left/right

𝑠! 𝑠"

𝑠#
-0.2 0.1

-0.2

+0.2
-0.1-0.1



19

Q-Learning

𝑄 𝑠, 𝑎 𝒂𝟏
up

𝒂𝟐
left

𝒂*
right

𝒔𝟏
𝒔𝟐
𝒔𝟑 - - -

Algorithm Q-Learning
Input:

𝑆 is a set of states
𝐴 is a set of actions
𝛾 is the discount

initialize 𝑄[𝑆, 𝐴] arbitrarily
observe initial state 𝑠
Repeat:

select and carry out an action 𝑎, randomly
receive reward 𝑟
observe new state 𝑠$
If 𝑠$ is terminal state:

𝑄 𝑠, 𝑎 = 𝑟
Else: 

𝑄 𝑠, 𝑎 = 𝑟 + 𝛾max
%+

𝑄[𝑠$, 𝑎$]
𝑠 ← 𝑠$ 

Until terminated

Move up/left/right



20

Q-Learning

𝑄 𝑠, 𝑎 𝒂𝟏
up

𝒂𝟐
left

𝒂#
right

𝒔𝟏 0.60 0.74 0.94

𝒔𝟐 0.36 0.32 0.78

𝒔𝟑 - - -1st episode:
𝑠 0 = 𝑠!, 𝑎 0 = 𝑎#, 𝑟 1 = 0.2, 𝑠 1 = 𝑠" , 𝑎 1 = 𝑎#, 𝑟 2 = −0.1, 𝑠 2 = 𝑠" , 𝑎 2 = 𝑎!, 𝑟 3 = 0.1, 𝑠 3 = 𝑠#

𝑄 𝑠, 𝑎 𝒂𝟏
up

𝒂𝟐
left

𝒂#
right

𝒔𝟏 0.60 0.74 0.82

𝒔𝟐 0.36 0.32 0.78

𝒔𝟑 - - -

𝑄 𝑠&, 𝑎* = 0.2 + 0.8 ∗max
,!
(𝑄 𝑠', 𝑎- )

𝑄 𝑠&, 𝑎* = 0.2 + 0.8 ∗ 0.78
= 0.82

𝑄 𝑠', 𝑎* = −0.1 + 0.8 ∗max
,!
(𝑄 𝑠', 𝑎- )

𝑄 𝑠&, 𝑎* = −0.1 + 0.8 ∗ 0.78
= 0.52

𝑄 𝑠', 𝑎& = 0.1

initialize 
𝑄[𝑆, 𝐴]

𝛾 = 0.8

𝑄 𝑠, 𝑎 𝒂𝟏
up

𝒂𝟐
left

𝒂#
right

𝒔𝟏 0.60 0.74 0.82

𝒔𝟐 0.36 0.32 0.52

𝒔𝟑 - - -

𝑄 𝑠, 𝑎 𝒂𝟏
up

𝒂𝟐
left

𝒂#
right

𝒔𝟏 0.60 0.74 0.82

𝒔𝟐 0.1 0.32 0.52

𝒔𝟑 - - -

n Step 1:

n Step 2:training loop

𝑠! 𝑠"

𝑠#
-0.2 0.1

-0.2

+0.2
-0.1-0.1

𝑄 s, 𝑎 = 𝑟 + 𝛾max
&;

𝑄(𝑠', 𝑎')



21

Q-Learning

𝑄 𝑠, 𝑎 𝒂𝟏
up

𝒂𝟐
left

𝒂#
right

𝒔𝟏 -0.2 0.56 0.40

𝒔𝟐 0.10 0.25 0.10

𝒔𝟑 - - -12st episode:

𝑠 0 = 𝑠!, 𝑎 0 = 𝑎", 𝑟 1 = −0.1, 𝑠 1 = 𝑠! , 𝑎 1 = 𝑎!, 𝑟 2 = −0.2, 𝑠 2 = 𝑠#

𝑄 𝑠, 𝑎 𝒂𝟏
up

𝒂𝟐
left

𝒂#
right

𝒔𝟏 -0.20 0.35 0.40

𝒔𝟐 0.10 0.25 0.10

𝒔𝟑 - - -

𝑄 𝑠&, 𝑎' = −0.1 + 0.8 ∗max
,!
(𝑄 𝑠&, 𝑎- )

𝑄 𝑠&, 𝑎* = −0.1 + 0.8 ∗ 0.56
= 0.35

𝑄 𝑠', 𝑎& = −0.2

𝑄 𝑠, 𝑎 𝒂𝟏
up

𝒂𝟐
left

𝒂#
right

𝒔𝟏 -0.20 0.35 0.40

𝒔𝟐 0.10 0.25 0.10

𝒔𝟑 - - -

After 
11th episode

𝑠! 𝑠"

𝑠#
-0.2 0.1

-0.2

+0.2
-0.1-0.1

𝑄 s, 𝑎 = 𝑟 + 𝛾max
&;

𝑄(𝑠', 𝑎')



22

Q-Learning

After 
15th episode

𝑄 𝑠, 𝑎 𝒂𝟏
up

𝒂𝟐
left

𝒂#
right

𝒔𝟏 -0.20 0.18 0.30

𝒔𝟐 0.10 0.08 -0.00

𝒔𝟑 - - -

After 
50th episode

𝑄 𝑠, 𝑎 𝒂𝟏
up

𝒂𝟐
left

𝒂#
right

𝒔𝟏 -0.20 0.12 0.28

𝒔𝟐 0.10 0.02 -0.02

𝒔𝟑 - - -

After 
100th episode

𝑄 𝑠, 𝑎 𝒂𝟏
up

𝒂𝟐
left

𝒂#
right

𝒔𝟏 -0.20 0.12 0.28

𝒔𝟐 0.10 0.02 -0.02

𝒔𝟑 - - -

After 
1000th episode

𝑄 𝑠, 𝑎 𝒂𝟏
up

𝒂𝟐
left

𝒂#
right

𝒔𝟏 -0.20 0.12 0.28

𝒔𝟐 0.10 0.02 -0.02

𝒔𝟑 - - -

Move up/left/right

𝑠! 𝑠"

𝑠#
-0.2 0.1

-0.2

+0.2
-0.1-0.1



23

Q-Learning

Q-table

𝑄 𝑠, 𝑎 𝒂𝟏 𝒂𝟐 ⋯ 𝒂𝒎

𝒔𝟏

𝒔𝟐

𝒔𝟑

⋮

𝒔𝒏

,< 𝑠, 𝑎, 𝑟, 𝑠! >
𝑠 ← 𝑠!

< (3 ∗ 256)&.∗(/< 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠

Too huge states space to approximate Q-function iteratively by 
Q-table!!!

𝑤)

ℎ*



24

Conclusion – Machine Learning
1. Supervised Learning

l Linear Regression
l Logistic Regression
l Classification

• Distance-based algorithms
• Linear classifiers
• Other classifiers

2. Unsupervised Learning
l Clustering

• K-means method
• Spectral clustering

l Representation learning
3. Reinforcement Learning

l Q-Learning, Q-table
l Exploration & Exploitation


