--- description: 发布于 2023-12-26 categories: - study date: 2023-12-26 slug: introduction-to-artificial-intelligence title: 人工智能导论 极速复习版 updated: tags: - study - artificial-intelligence copyright: false --- # 人工智能导论 极速版 zstu 浙江理工大学 2023学年第1学期 人工智能 开卷考试 期末复习 ## 介绍 智力是学习、理解或处理新情况或困难情况的能力; 应用知识来操纵环境或抽象思考的能力 ![image-20231225234617578](https://media.opennet.top/i/2023/12/25/12paq94-0.png) ![image-20231225234637339](https://media.opennet.top/i/2023/12/25/12pem5g-0.png) ## 知识表示 ### 命题逻辑 #### 理论 命题是一个**陈述句**,并且必须能判断真假 ![image-20231225235102921](https://media.opennet.top/i/2023/12/25/12s6bb9-0.png) ![image-20231225235151513](https://media.opennet.top/i/2023/12/25/12sgrj8-0.png) ![image-20231225235331160](https://media.opennet.top/i/2023/12/25/12tjh9h-0.png) ![image-20231225235354291](https://media.opennet.top/i/2023/12/25/12to8n9-0.png) ![扫描件_等值式_1](https://media.opennet.top/i/2023/06/16/648bfe9e965de.jpg) #### 题目 ![image-20231225235503519](https://media.opennet.top/i/2023/12/25/12uk6uk-0.png) ![image-20231225235514757](https://media.opennet.top/i/2023/12/25/12ummri-0.png) ![image-20231225235539004](https://media.opennet.top/i/2023/12/25/12urokh-0.png) ![image-20231225235635468](https://media.opennet.top/i/2023/12/25/12vcgi0-0.png) ![image-20231225235640865](https://media.opennet.top/i/2023/12/25/12vdkgd-0.png) ![image-20231225235656649](https://media.opennet.top/i/2023/12/25/12vgzj1-0.png) ![image-20231226000723498](https://media.opennet.top/i/2023/12/26/qylt-0.png) ### 谓词逻辑 #### 理论 谓词描述关系 P(x) 或 M(x) 表示一个一元谓词逻辑 ![image-20231225235825351](https://media.opennet.top/i/2023/12/25/12wh7b7-0.png) ![扫描件_定义2_3量词是描述个体常项与个体变项之_1](https://media.opennet.top/i/2023/06/16/648c0916a5990.jpg) ![扫描件_第2章一阶逻辑_1](https://media.opennet.top/i/2023/06/16/648c0a790c6d9.jpg) 量词不能随意调换顺序 量词的优先级比逻辑联结词高 ![扫描件_定理2-2否定等值式_1](https://media.opennet.top/i/2023/06/16/648c1e702d20e.jpg) ![扫描件_定理24量词分配律_1](https://media.opennet.top/i/2023/06/16/648c1e87b2223.jpg) ![扫描件_一个谓词公式可以演算成与之等值的标准形式_1](https://media.opennet.top/i/2023/06/16/648c1f5964762.jpg) 前束范式运算前先换名 ![image-20231226000606035](https://media.opennet.top/i/2023/12/26/1kxv-0.png) #### 题目 ![image-20231226000112663](https://media.opennet.top/i/2023/12/25/12y6z9e-0.png) ![image-20231226000120865](https://media.opennet.top/i/2023/12/25/12y8mhv-0.png) ![image-20231226000131343](https://media.opennet.top/i/2023/12/25/12yb2f5-0.png) ![image-20231226000501607](https://media.opennet.top/i/2023/12/25/130i29r-0.png) ![image-20231226000527687](https://media.opennet.top/i/2023/12/25/130nl9i-0.png) ![image-20231226000547183](https://media.opennet.top/i/2023/12/25/130ryz4-0.png) ![image-20231226000741956](https://media.opennet.top/i/2023/12/26/uu0j-0.png) ### 产生式系统 ![image-20231226000812764](https://media.opennet.top/i/2023/12/26/19wws-0.png) ![image-20231226000818722](https://media.opennet.top/i/2023/12/26/1ci0x-0.png) ![image-20231226000826856](../../../../../Library/Application%20Support/typora-user-images/image-20231226000826856.png) ![image-20231226000838242](https://media.opennet.top/i/2023/12/26/1fr4e-0.png) ![image-20231226000859149](https://media.opennet.top/i/2023/12/26/1so6x-0.png) ### 框架系统 ![image-20231226000924456](https://media.opennet.top/i/2023/12/26/1xyql-0.png) ![image-20231226000933405](https://media.opennet.top/i/2023/12/26/1zu7g-0.png) ![image-20231226000939683](https://media.opennet.top/i/2023/12/26/219cj-0.png) ![image-20231226000946606](https://media.opennet.top/i/2023/12/26/22s2e-0.png) ![image-20231226000957744](https://media.opennet.top/i/2023/12/26/2515e-0.png) ### 状态空间系统 ![image-20231226001023321](https://media.opennet.top/i/2023/12/26/2j530-0.png) ![image-20231226001036378](https://media.opennet.top/i/2023/12/26/2lzvh-0.png) ![image-20231226001044195](https://media.opennet.top/i/2023/12/26/2nr0h-0.png) ![](https://media.opennet.top/i/2023/12/26/32bde-0.png) ### 知识图谱* ![image-20231226001135978](https://media.opennet.top/i/2023/12/26/37hzt-0.png) ![image-20231226001147128](https://media.opennet.top/i/2023/12/26/39rfc-0.png) ![image-20231226001153868](https://media.opennet.top/i/2023/12/26/3baiv-0.png) ![image-20231226001200587](https://media.opennet.top/i/2023/12/26/3l8gc-0.png) ![image-20231226001207587](https://media.opennet.top/i/2023/12/26/3mor9-0.png) ![image-20231226001215010](https://media.opennet.top/i/2023/12/26/3oayl-0.png) ## 搜索 ### 理论 ![image-20231226001241015](https://media.opennet.top/i/2023/12/26/3tq9x-0.png) ![image-20231226001335013](https://media.opennet.top/i/2023/12/26/4dxxz-0.png) ![image-20231226001349174](https://media.opennet.top/i/2023/12/26/4gsmw-0.png) ![image-20231226001403400](https://media.opennet.top/i/2023/12/26/4slah-0.png) ![image-20231226001410395](https://media.opennet.top/i/2023/12/26/4ubm2-0.png) ![image-20231226001434338](https://media.opennet.top/i/2023/12/26/4zdse-0.png) ![image-20231226001443568](https://media.opennet.top/i/2023/12/26/5168u-0.png) ![image-20231226001531516](https://media.opennet.top/i/2023/12/26/5k3k9-0.png) ### 题目 ![image-20231226001457876](https://media.opennet.top/i/2023/12/26/547f2-0.png) ![image-20231226001507819](https://media.opennet.top/i/2023/12/26/5ev5x-0.png) ## 模型评估和选择 ### 准确率 误差 过拟合 ![image-20231226001623609](https://media.opennet.top/i/2023/12/26/63uiv-0.png) ![image-20231226001657563](https://media.opennet.top/i/2023/12/26/6b1ne-0.png) ![image-20231226001705605](https://media.opennet.top/i/2023/12/26/6laq6-0.png) ![image-20231226001727422](https://media.opennet.top/i/2023/12/26/6q1z1-0.png) ![image-20231226001738210](https://media.opennet.top/i/2023/12/26/6shlk-0.png) ### 评估方法 ![image-20231226001941537](https://media.opennet.top/i/2023/12/26/7zxbb-0.png) ![image-20231226001952193](https://media.opennet.top/i/2023/12/26/82al5-0.png) ![image-20231226002007852](https://media.opennet.top/i/2023/12/26/8e38d-0.png) ![image-20231226002022812](https://media.opennet.top/i/2023/12/26/8haeu-0.png) ### 性能指标 ![image-20231226002123085](https://media.opennet.top/i/2023/12/26/92s5r-0.png) ![image-20231226002130184](https://media.opennet.top/i/2023/12/26/94b8p-0.png) ![image-20231226002143936](https://media.opennet.top/i/2023/12/26/9793b-0.png) ![image-20231226002152418](https://media.opennet.top/i/2023/12/26/999h1-0.png) ![image-20231226002207073](https://media.opennet.top/i/2023/12/26/9kwxm-0.png) ![image-20231226002217110](https://media.opennet.top/i/2023/12/26/9mqdy-0.png) ![image-20231226002224463](https://media.opennet.top/i/2023/12/26/9ogn1-0.png) ### 题目 ![image-20231226002258774](../../../../../Library/Application%20Support/typora-user-images/image-20231226002258774.png) ![image-20231226002311319](https://media.opennet.top/i/2023/12/26/a7bjt-0.png) ![image-20231226002330301](https://media.opennet.top/i/2023/12/26/aatze-0.png) ![image-20231226002403831](https://media.opennet.top/i/2023/12/26/aqphs-0.png) ## 机器学习 ### 监督学习 #### 回归 ![image-20231226002538556](https://media.opennet.top/i/2023/12/26/bjmlq-0.png) #### 线性回归 ![image-20231226002546750](https://media.opennet.top/i/2023/12/26/bl5o3-0.png) ![](https://media.opennet.top/i/2023/12/26/bxd9d-0.png) ![image-20231226002623421](https://media.opennet.top/i/2023/12/26/c1vgy-0.png) ![image-20231226002639972](https://media.opennet.top/i/2023/12/26/c5ehc-0.png) #### 逻辑回归 ![image-20231226002702076](https://media.opennet.top/i/2023/12/26/ciqgl-0.png) ![image-20231226002755611](https://media.opennet.top/i/2023/12/26/cu0g2-0.png) #### 分类 ![image-20231226002821957](https://media.opennet.top/i/2023/12/26/d8ejc-0.png) #### 最近邻 ![image-20231226002915035](https://media.opennet.top/i/2023/12/26/dscl1-0.png) ![image-20231226002929121](https://media.opennet.top/i/2023/12/26/dvc0r-0.png) #### ϵ-ball 最近邻 ![image-20231226003016883](https://media.opennet.top/i/2023/12/26/ee2qs-0.png) #### K 近邻 ![image-20231226003032811](https://media.opennet.top/i/2023/12/26/ehn2m-0.png) 确定 k 近邻算法(k-NN)中 k 值的大小是一个重要决策,因为它直接影响到算法的性能。没有固定的规则来选择最佳的 k 值,但是可以通过以下方法来确定: 1. **交叉验证**:最常用的方法是通过交叉验证,特别是 k 折交叉验证。在这种方法中,数据集被分成 k 个小组(folds)。算法在 k-1 个小组上训练,并在剩下的一组上测试。这个过程重复进行,每次选择不同的组作为测试集,然后取平均误差率。通过比较不同 k 值的误差率,可以选择最佳的 k 值。 2. **误差率**:对于分类问题,可以计算不同 k 值对应的误差率。误差率最低的 k 值通常会被选择。对于回归问题,可以计算均方误差(MSE)。 3. **启发式方法**:通常,k 值的选择应该是一个奇数(如果类别数为偶数),以避免决策的平局。一个常见的启发式方法是选择 \(\sqrt{n}\),其中 n 是训练样本的数量。 4. **距离权重**:考虑距离权重可以减少更远邻居的影响,这样可以在考虑更多的邻居(较大的 k 值)的同时减少噪声数据的影响。 5. **问题特定知识**:有时,对问题的了解可以帮助确定 k 的值。例如,在高度不平衡的数据集中,较大的 k 值可能有助于防止算法过分偏向多数类。 6. **模型复杂度**:较小的 k 值会导致模型复杂度高,可能过拟合数据;较大的 k 值会导致模型简单,可能无法捕捉数据结构。因此,需要找到一个平衡点。 7. **可视化工具**:有时候,将不同的 k 值的效果可视化,例如通过绘制误差率和 k 值的关系图,可以帮助选择一个好的 k 值。 8. **规则化方法**:当数据集非常大时,可以使用规则化方法来选择 k。例如,可以将 k 设置为训练样本数量的一个小百分比。 #### 距离 ![image-20231226003831748](https://media.opennet.top/i/2023/12/26/j8pc4-0.png) #### 最近子空间分类器* ![image-20231226003846351](https://media.opennet.top/i/2023/12/26/jbsj3-0.png) ![image-20231226003910874](https://media.opennet.top/i/2023/12/26/jpt0v-0.png) ![image-20231226003919381](https://media.opennet.top/i/2023/12/26/jrj2h-0.png) ### 非监督学习 #### K-均值聚类 ![image-20231226093237982](https://media.opennet.top/i/2023/12/26/fbyf07-0.png) ![image-20231226093326117](https://media.opennet.top/i/2023/12/26/fc1vsd-0.png) ![image-20231226093356816](https://media.opennet.top/i/2023/12/26/fc8ddj-0.png) ![image-20231226093406866](https://media.opennet.top/i/2023/12/26/fcj9ah-0.png) ![image-20231226093416072](https://media.opennet.top/i/2023/12/26/fcl3ih-0.png) ![image-20231226093425875](https://media.opennet.top/i/2023/12/26/fcn1sl-0.png) ![image-20231226093438871](https://media.opennet.top/i/2023/12/26/fcpv50-0.png) ![image-20231226093447604](https://media.opennet.top/i/2023/12/26/fcrvxs-0.png) ![image-20231226093504110](https://media.opennet.top/i/2023/12/26/fd3zev-0.png) ![image-20231226093608889](https://media.opennet.top/i/2023/12/26/fdq88w-0.png) ![image-20231226093621440](https://media.opennet.top/i/2023/12/26/fdt25a-0.png) #### 谱聚类* ![image-20231226093725010](https://media.opennet.top/i/2023/12/26/fefeq5-0.png) ![image-20231226093734827](https://media.opennet.top/i/2023/12/26/fehive-0.png) ![image-20231226093748777](https://media.opennet.top/i/2023/12/26/fek8hj-0.png) #### 题目 ![image-20231226093521977](https://media.opennet.top/i/2023/12/26/fd7xv1-0.png) ![image-20231226093527701](https://media.opennet.top/i/2023/12/26/fd94np-0.png) ![image-20231226093534540](https://media.opennet.top/i/2023/12/26/fdafc2-0.png) ![image-20231226093540608](https://media.opennet.top/i/2023/12/26/fdbnkf-0.png) ![image-20231226093547420](https://media.opennet.top/i/2023/12/26/fddbk3-0.png) #### 表示学习-线性编码* ![image-20231226094006456](https://media.opennet.top/i/2023/12/26/fg3spp-0.png) ![image-20231226094047128](https://media.opennet.top/i/2023/12/26/fgcd4u-0.png) #### 表示学习-PCA* ![image-20231226094141936](https://media.opennet.top/i/2023/12/26/fgwpwp-0.png) ![image-20231226094150296](https://media.opennet.top/i/2023/12/26/fgymho-0.png) 表示学习应用:人脸图像压缩 图像去模糊 图像去噪 形态成分分析 图像修复 ### 强化学习 ![image-20231226094741449](https://media.opennet.top/i/2023/12/26/fkh64r-0.png) ![image-20231226094827747](https://media.opennet.top/i/2023/12/26/fkzvo6-0.png) ![image-20231226094841544](https://media.opennet.top/i/2023/12/26/fl2lmd-0.png) ![image-20231226094856752](https://media.opennet.top/i/2023/12/26/fl5y93-0.png) #### Q-Learning ![image-20231226094941750](https://media.opennet.top/i/2023/12/26/flnxiq-0.png) ![image-20231226095002202](https://media.opennet.top/i/2023/12/26/flsisw-0.png) ![image-20231226095012577](https://media.opennet.top/i/2023/12/26/fm377r-0.png) ![image-20231226095028712](https://media.opennet.top/i/2023/12/26/fm6uqu-0.png) ![image-20231226100016133](../../../../../Library/Application%20Support/typora-user-images/image-20231226100016133.png) ![image-20231226100027876](https://media.opennet.top/i/2023/12/26/fs4z6n-0.png) ![image-20231226100059748](https://media.opennet.top/i/2023/12/26/fsbm9a-0.png) ## 神经网络 ### 历史 ![image-20231226100133188](https://media.opennet.top/i/2023/12/26/fsrfm8-0.png) ### 神经元 ![image-20231226100201642](https://media.opennet.top/i/2023/12/26/fsxkl5-0.png) ### 激活函数 ![image-20231226100219893](https://media.opennet.top/i/2023/12/26/fta4or-0.png) ![image-20231226100230596](https://media.opennet.top/i/2023/12/26/ftc8rj-0.png) ![image-20231226100238240](https://media.opennet.top/i/2023/12/26/ftdy3c-0.png) ![image-20231226100302971](https://media.opennet.top/i/2023/12/26/ftj4f9-0.png) ### 题目 ![image-20231226100345367](https://media.opennet.top/i/2023/12/26/fu16ax-0.png) ### 前馈神经网络 FNN ![image-20231226100518069](https://media.opennet.top/i/2023/12/26/fv219k-0.png) ![image-20231226100609092](https://media.opennet.top/i/2023/12/26/gjelge-0.png) ### 循环神经网络 RNN ![image-20231226100701697](https://media.opennet.top/i/2023/12/26/gjpybv-0.png) ![image-20231226100711886](https://media.opennet.top/i/2023/12/26/gk0q3q-0.png) ![image-20231226100721630](https://media.opennet.top/i/2023/12/26/gk2ofo-0.png) ![image-20231226100735285](https://media.opennet.top/i/2023/12/26/gk5wva-0.png) ![image-20231226100840101](https://media.opennet.top/i/2023/12/26/gks7hx-0.png) ### 题目 ![image-20231226101427932](https://media.opennet.top/i/2023/12/26/goa8lq-0.png) ### 损失函数 ![image-20231226100924698](https://media.opennet.top/i/2023/12/26/glaggt-0.png) ![image-20231226100933684](https://media.opennet.top/i/2023/12/26/glceg0-0.png) ![image-20231226100941780](https://media.opennet.top/i/2023/12/26/gle0jw-0.png) ### 最速下降法 ![image-20231226101047508](https://media.opennet.top/i/2023/12/26/gm0t5q-0.png) ![image-20231226101056401](https://media.opennet.top/i/2023/12/26/gm2o0o-0.png) ### 深度学习 ![image-20231226101112828](https://media.opennet.top/i/2023/12/26/gmenkg-0.png) ![image-20231226101126707](https://media.opennet.top/i/2023/12/26/gmhov0-0.png) ### 反向传播 ![image-20231226101145588](https://media.opennet.top/i/2023/12/26/gmltb5-0.png) ![image-20231226101153653](https://media.opennet.top/i/2023/12/26/gmnkf3-0.png) ![image-20231226101201752](https://media.opennet.top/i/2023/12/26/gmp5mc-0.png) ![image-20231226101209217](https://media.opennet.top/i/2023/12/26/gmz6xd-0.png) ![image-20231226101216893](https://media.opennet.top/i/2023/12/26/gn0xqw-0.png) ![image-20231226101223638](https://media.opennet.top/i/2023/12/26/gn2e31-0.png) ![image-20231226101233192](https://media.opennet.top/i/2023/12/26/gn4o1m-0.png) ### 卷积神经网络 #### 历史 ![image-20231226101313011](https://media.opennet.top/i/2023/12/26/gnllxm-0.png) #### 感受野 ![image-20231226101518314](https://media.opennet.top/i/2023/12/26/gotox5-0.png) #### 特征图 ![image-20231226101648433](https://media.opennet.top/i/2023/12/26/gplk16-0.png) #### 卷积 ![image-20231226101703524](https://media.opennet.top/i/2023/12/26/gpxbt2-0.png) ![image-20231226101758482](https://media.opennet.top/i/2023/12/26/gq97fp-0.png) #### 题目 ![image-20231226101728230](https://media.opennet.top/i/2023/12/26/gq2qta-0.png) ![image-20231226101737357](https://media.opennet.top/i/2023/12/26/gq4iv6-0.png) ![image-20231226101824971](https://media.opennet.top/i/2023/12/26/gqn77h-0.png) #### 池化 ![image-20231226101853645](https://media.opennet.top/i/2023/12/26/gqtjj4-0.png) #### 题目 ![image-20231226101908468](https://media.opennet.top/i/2023/12/26/gr52q6-0.png) #### 成就和应用 ![image-20231226102025438](https://media.opennet.top/i/2023/12/26/grub4r-0.png) ![image-20231226102032190](https://media.opennet.top/i/2023/12/26/grw0po-0.png) ![image-20231226102038536](https://media.opennet.top/i/2023/12/26/grx65g-0.png) ![image-20231226102044606](https://media.opennet.top/i/2023/12/26/gryxmd-0.png) ![image-20231226102052312](https://media.opennet.top/i/2023/12/26/gs03pb-0.png) #### 题目 ![image-20231226102113742](https://media.opennet.top/i/2023/12/26/gsdblr-0.png) ![image-20231226102120925](https://media.opennet.top/i/2023/12/26/gsep5o-0.png) ### 序列学习* 序列学习(Sequence Learning)是机器学习中的一个重要分支,专注于从序列数据中学习模式和结构。序列数据是指数据元素按特定顺序排列的数据,例如时间序列数据、文本、语音或者视频帧。序列学习的目标是理解这些数据的内在结构,并能够预测或生成新的序列。 主要类型 1. **时间序列预测**:用于预测未来的数据点,例如股票价格预测、天气预报等。 2. **序列生成**:生成与训练数据类似的新序列,如文本生成、音乐创作等。 3. **序列分类**:将序列数据分类到不同类别中,例如语音识别或情感分析。 4. **序列标注**:在序列的每个元素上进行分类,常用于诸如命名实体识别、词性标注等任务。 关键技术 1. **递归神经网络(RNN)**:一种特别适用于序列数据的神经网络结构,能够处理任意长度的序列。 2. **长短期记忆网络(LSTM)**:RNN的一种变体,通过特殊的结构解决了RNN长期依赖问题。 3. **门控循环单元(GRU)**:与LSTM类似,但结构更简单,效果也很好。 4. **Transformer**:一种基于自注意力机制的模型,特别适用于大规模序列数据处理,如机器翻译。 5. **卷积神经网络(CNN)**:虽主要用于图像处理,但也可用于处理序列数据,特别是在处理较短的序列时。 应用场景 - **自然语言处理**:如机器翻译、文本摘要、情感分析等。 - **语音识别**:将语音信号转换成文字。 - **视频分析**:从视频序列中识别特定事件或对象。 - **股票市场分析**:预测股票价格变化。 - **生物信息学**:如蛋白质结构预测。 挑战 - **长期依赖问题**:在处理长序列时,传统模型(如RNN)难以记住早期信息。 - **资源消耗**:特别是对于大规模模型(如Transformer),需要大量的计算资源。 - **数据质量和可用性**:高质量、标注良好的序列数据并不总是可用。 序列学习是一个快速发展的领域,随着新技术的出现,其应用范围和效果都在不断提升。